

TONGHUI ELECTRONIC

en.tonghui.com.cn

TECHMIZE

Join hands, benefit the future

- 1994 * Tonghui electronic was established locating in Changzhou Hi-Tech Zone.
- 1995 * Tonghui obtained the license of manufacturing T&M instruments from the government.
- 1996 * The first set of LCR Meter TH2811 was released. Tonghui entered into the impedance measurement industry.
- 1999 * Tonghui won the prize of "Measuring Instruments Quality Advanced Enterprise" from Jiangsu bureau of technical supervision.
 - * Tonghui changed the name to "Tonghui Electronic Limited company".
 - * Tonghui obtained the land of 6,000m² located in Tianshan road to build the new factory.
- 2001 * Tonghui moved to the new factory.
- 2002 * Tonghui got ISO9000: 2000 certification.
- 2003 * Tonghui enlarged the company size to have the land area 14000m² and construction area 8200m².
 - * Tonghui was assessed to be "New & Hi-tech Enterprise" by the government.
 - * Tonghui joined the association of China Electronic Instrument Industry.
- * The Automatic Component Analyzer TH2818 won the second prize of "Changzhou Science and Technology Progress Award" and the third prize of "Jiangsu Province Science and Technology Progress Award".
 - * Tonghui was awarded the "Top ten private-owned New & Hi-tech Enterprise in Changzhou Hi-tech District".
- 2006 * TH1961 6 ½ Digital Multimeter was developed and identified as "Changzhou Key Science and Technology Project".
 - * Tonghui was rated as "Credit Integrity Enterprise" by Changzhou Bank Association.
- 2007 * Tonghui won the title of "The most satisfied test instrument supplier in 2007"
- * Tonghui established the routine laboratory to test the mechanical, temperature, humidity, safety, power adaptability, electromagnetic compatibility and other performance indicators completely.
 - * Tonghui acquired CMMI software management international certification.
- 2009 * Tonghui was identified as "Hi-tech Enterprise of Jiangsu Province" again.
 - * Tonghui got the right to trading internationally.
 - * Tonghui brand was awarded as "Jiangsu famous-brand" by Jiangsu Quality Supervision and Management Committee.
- 2010 * Tonghui won the title of "2009 Customer most satisfied test instrument supplier in electronic transformer industry".
 - * Tonghui won the "Top 10 most influential brands" of electronic industry in the first industrial product selection.
- 2011 * Tonghui received the title of "Engineering Technology R&D center on Electronic Component Measurement Instrument of Changzhou City".
- 2012 * *Tonghui was renamed as Changzhou Tonghui Electronic Co., Ltd.
 - * The pulse peak voltmeter TH2141 won the "2012 Electronic Measuring Instrument Product Digital Voltmeter/Multi-meter Product Design Award".
- * Tonghui's subsidiary corporation, Dongguan Tongxuan Electronic Technology Limited Company and Suzhou Jingshan Science Equipment Limited Company were established.
 - * Tonghui was awarded as "Star Enterprise of CEF" by China electronics Fair.
 - * The grand 20th anniversary ceremony was held.
- 2015 * Tonghui was listed in the market with the stock code: 833509.
 - * The high frequency LCR meter TH2826 series won the second prize of "Changzhou Science and Technology Progress Award".
- 2016 * Tonghui was awarded by Changzhou administration for industry and commerce as "Respect the contract and Credit Integrity Enterprise".
 - * Tonghui's trademark was recognized as a well-known trademark of Changzhou.
- 2017 * Tonghui was awarded "2017 Changzhou innovation and entrepreneurship competition" the first prize.
 - * Tonghui was funded by the special fund of the transformation of scientific and technological achievements of Jiangsu province.
 - * Tonghui was elected as vice chairman of the 8th council of China Electronic Instrument Industry Association.
- 2019 * Tonghui was identified as "Hi-tech Enterprise of Jiangsu Province" again.
 - * Tonghui won the second prize of the 2019 Changzhou Innovation and Entrepreneurship Competition.
 - * Tonghui won the second Prize of China Machinery Industry Science and Technology Award.
- 2020 * Tonghui was rated as the excellent company by the government.
 - * Power electronic tester was recognized as a special new product in Jiangsu Province.
 - * The research and development of energy feedback programmable high-power DC power supply won the third prize of the 2020 Changzhou Innovation and Entrepreneurship Competition.
 - * The Precision Impedance Analyzer TH2839 series was identified as the major equipment and key components of Changzhou in 2020.
- 2021 * Tonghui is listed on the selected layer of the National Equity Exchange System on January 11, 2021.
 - * Won the AAA corporate credit rating in August 2021.
 - * In August 2021, won the Integrity Management Enterprise
 - * First Prize of Jiangsu Innovation and Entrepreneurship Competition
 - * In September 2021, the company is relocated in No. 1, Xinzhu Road, Xinbei District, Changzhou with new buildings and production lines.

CHANGZHOU TONGHUI ELECTRONIC CO.,LTD.

en.tonghui.com.cn

- Changzhou Tonghui Electronics Co., Ltd., founded in 1994, is a national high-tech enterprise integrating R&D, manufacturing and marketing. In September 2021, the company moved into a garden-style modern factory with 30,000 square meters land area and 30,000 square meters construction area. At present, there are more than 270 employees, 25% of which are R&D personnel. Tonghui was listed in Beijing Exchange in 2021 with the stock code 833509.
- Since its establishment, the company has been committed to the technology and product research and development of electronic measuring instruments, especially in the field of precision impedance measurement, with nearly 30 years of accumulation of test theory, test technology and practical experience. Following the development trend of the industry, the company re-planned the development strategy of "intelligent testing, efficient testing, accurate testing, and industrial interconnection", and practiced the ingenuity of "professionalism, concentration, and concentration". Based on the in-depth understanding of the industry development prospects and the expansion of the electronic measuring instrument industry chain, the company is based on the power electronic magnetic component measuring instruments, and further develops the field of power electronic measuring instruments and complete sets of measurement system solutions, and is committed to becoming the world's leading electronic measurement instrument and integrated solution provider.
- Tonghui currently has a product line with superior performance and rich specifications: component parameter testers, winding component testers, electrical safety test instruments, wire harness/cable testers, micro signal test instruments, power electronic test instruments, digital multimeters, data loggers, automatic power supply/battery comprehensive test systems, etc. Products are widely used in scientific research, production testing and quality management in the fields of 3C consumer electronics, 5G communications, semiconductor packaging and testing, new energy vehicles, power electronics, and household appliances. Tonghui insists on using innovative solutions to help customers solve measurement problems, improve test efficiency and product quality.
- Looking forward to the future, Tonghui will continue to shoulder more social responsibilities with a pragmatic and steady attitude, dedicate innovation achievements and share development value with an international mind and vision. Tonghui will accurately grasp the business opportunities of the strong growth of the global electronic information industry, and realize the value of Tonghui in an all-round way.

Index

	I . Component Parameter Test Instruments				
	A. Impedance Analyzer				
NEW	TH2851 Series Impedance Analyzer	10Hz-130MHz	1mΩ-100M (Z)	0.08%	P1-2
	TH2839 Series Impedance Analyzer	20Hz-10MHz	0.1mHz	0.05%	P3-4
	B. LCR Meter				
NEW	TH2840 Series High Speed LCR Meter	20Hz-2MHz	0.1mHz	0.05%	P5-7
C€	TH2838 Series Precision LCR Meter	20Hz-2MHz	0.1mHz	0.05%	P8-11
NEW	TH2836 Series LCR Meter	4Hz-8.5MHz		0.05%	P12
(€	TH283X Series Compact LCR Meter	50Hz-200kHz	1mHz	0.05%	P17-18
	TH2810B+ LCR Meter	100Hz-10kHz	Dots Freq.	0.1%	P23
C€	TH2822 Series Handheld LCR Meter	100Hz-100kHz	Dots Freq.	0.1%	P25-26
	C. Automatic Transformer Test System				
NEW	TH2840X Series Automatic Transformer Test System	20Hz-2MHz		24-288Pin	P29-32
C€	TH2829X Series Automatic Transformer Test System	20Hz-1MHz		20-192Pin	P33
	D. DC Bias Current Source				
	TH1778A Series DC Bias Current Source	0Hz-2MHz			P34
	E. Semiconductor device test equipment				
NEW	TH510 Series Semiconductor C-V Characteristic Analyzer				P35-36

	II . Mirco Signal Type Tester				
	PIV test system for power semiconductor devices				
NEW	TH500 Series PIV test system for power semiconductor device	S			P37-40
	A. Source Measurement Unit				
NEW	TH199X Series precision source/measure unit				P37-40
	B. fA meter/pA meter/Electrometer/High Resistance Meter				
NEW	TH2690 Series fA meter/pA meter/Electrometer/High Resistance Meter	1000V, 0.1fA, 1PΩ	, 1fC		P41
	C. DC Resistance Meter				
	TH2518 Series Resistance/ Temperature Scanner	1μΩ-2kΩ,90Ch			P42
C€	TH2515 DC Resistance Meter	0.1 μ Ω -110 \mathbf{M} Ω	TC	0.01%	P43-44
C€	TH2516 Series DC Resisitance Meter	1 μΩ -2M Ω	TC	0.05%	P45-46
	D. Insulation Resistance Meter				
(€	TH2684/TH2684A High Precision Insulation Resistance Meter	10V-1000V(500V)		10k Ω -100 ΤΩ	P47-48
(€	TH2683A/B Insulation Resistance Meter	10V-500V/1000V		100k Ω -10T Ω	P49
	E. Digit Multimeter				
C€	TH1963/A/TH1953 Digit Multimeter	1199999 Digit			P50
	F. Battery Tester				
(€	TH2523 Series Battery Tester	100 _μ V-350V	1μΩ-3.5kΩ	0.1%	P53

	W B . El				
	III. Power Electronic Tester				
	A. Programmable DC Power Supply				
	TH6220 Series DC Power Supply				P55
	TH6200 Series DC Power Supply	Dual Range, Linear		80W-216W	P55
€	TH6300 Series DC Power Supply	Wide Range, Linear		200W-600W	P56
	TH6420 Series Multi-channel Programmable Linear DC Power Supply				
	TH6400 Series Triple Programmable DC Power Supply	Multi Channels, Linea	ar	Three Channels	P57
C€	TH6402B DC Power Supply	Multi Channels, Linea	ar	Four Channels	P58
	TH6500 Series DC Power Supply	High Precision, Linea	ır	96W-216W	
	TH6700 Series Programmable Switch DC Power Supply	0-800V/0-100A		360W-1080W	P60-61
	TH6700A Series Programmable Switch DC Power Supply				
	TH6900 Series Programmable DC Power Supply	0-1000V/0-200A		750W-3000W	P62-64
	B. Programmable AC Power Supply				
C€	TH7100 Series Programmable AC Power Supply	0-300V/500W-2kW		45-500Hz	P65
	C. DC Electronic Load				
	TH8200 Series Programmable DC Electronic Load			175W-1050W	P66-67
	TH8300 Series Programmable DC Electronic Load	Module, 2/5 (2/4/5/1	0 Channels)	100W-400W	P68-69
	TH8400 Series Programmable DC Electronic Load	Economic		175W-350W	P70
	D. Multi-channel digital power meter				
(€	TH3300 Series Digital Power Meter	Single Channel		0.15%, 450Hz	P71
	TH341X/TH342X Series Multi-channel Digital Power Meter	Single/Three/Four Ch	nannel	0.15%, 450Hz	P72
NEW	TH343X/TH344X Series Multi-channel Digital Power Meter	Single/Three/Four Ch	nannel	0.1%, 100Hz	P73-74
	IV . Electrical Safety Tester and Cable Tester A. Hipot Tester				
€	TH9110 Series AC/DC Hipot Tester	AC: 5kV/100mA	DC: 6kV/25mA	500VA	P75
	TH9120 Series AC/DC Hipot Tester	TH9120A: AC10kV/20	mA TH9120D:	12kV/10mA	P76-77
NEW	TH9130 Series Multifunction Safety Compliance Analyzer				
(€	TH9201 Series AC/DC Hipot Tester	A O . 51-1//00 A	DO 013//40:-A	4.40.01	D70
	TH9320-S4/S8 AC/DC Hipot Tester	AC: 5kV/20mA	DC: 6kV/10mA	4/8 Ch	P78
(€	TH9310/TH9320 Series AC/DC Hipot Tester	AC: 5kV/20mA	DC: 6kV/10mA		P79
CE	B. Parallel 8-channel Hipot Tester	AC 51/1/10mA	DC 6W//EmA	Darallal 9 Ch	DOO
- (6	TH9010 Series Parallel 8-channel Hipot Tester	AC: 5kV/10mA	DC: 6kV/5mA	Parallel 8 Ch	POU
	C. Impulse Winding Tester	2001/ 50001/	4/9 Cb	>10LI	P81-82
€ (€	TH2883S8-5/TH2883S4-5 Impulse Winding Tester	300V-5000V 100V-1200V/5000V/1	4/8 Ch	≥10µH	P83-84
- ((TH2883 Series Impulse Winding Tester D. Ground Bond Tester	100 V-1200 V/3000 V/1	10000 V	≥1µH	F03-04
NEW	TH9410A/TH9411A Ground Bond Tester	AC 0.32/45A	0.600m0		P87
May		AC: 0-32/45A	0-600mΩ		P0/
	F. Cable/Harness Tester	04/400DIN			DOO
	TH8601/A Cable/Harness Tester	64/128PIN			P89
	TH8602 Series Cable/Harness Tester TH8603-4 Series Cable/Harness Tester	64-256PIN, Type C			P90 P91
	1110000-4 Selies Capie/Halliess Testel	512PIN			1.91
	V . Accessories				

Accessories

P92-93

I. TH2851 Series Impedance Analyzer

Features

- Test frequency: 10Hz-130MHz
- High precision: using automatic balance bridge technology, four-terminal pair test configuration
- High stability and consistency
- High speed: the fastest test speed up to 5ms
- High resolution: 10.1-inch capacitive touch screen, resolution 1280*800
- Three test methods: point test, list scan, and graph scan
- 1601 point multi-parameter list scanning function
- Four-parameter measurement
- 4-channel graphic scanning function, each channel can display 4 curves, 16 kinds of split-screen display modes for channels and curves
- Powerful sorting: 10 grades sorting in LCR mode
- Graphic scanning mode, each curve is sorted individually
- High compatibility: Support SCPI instruction set, compatible with KEYSIGHT E4990A, E4980A, E4980AL, HP4284A

 $\label{eq:definition} Dimension: \ 428mm(W)x220mm(H)x325mm(D)$

Weight: 14.5kg

Applications

Passive component

Impedance parameter estimation and performance analysis of capacitor, inductor, magnetic core, resistor, piezoelectric devices, transformers, chip components and network components

Semiconductor component

Parasitic parameter test and analysis of LED driver integrated circuit C-VDC features of varactors

Parasitic parameter analysis of transistors or integrated circuit

Other components

Impedance assessment of printed circuit boards, relays, switches, cables, batteries

Dielectric material

Dielectric constant and loss angle evaluation of plastics, ceramics and other materials

Magnetic materials

Magnetic permeability and loss angle assessment of ferrite, amorphous body and other magnetic materials

Semiconductor materials

Dielectric constant, electrical conductivity and C-V characteristics of semiconductor materials

Liquid crystal cell

Dielectric constant, elastic constant and C-V characteristics of liquid crystal cell

The state of the s								
Model		TH2851-015	TH2851-030	TH2851-050	TH2851-080	TH2851-130		
Display		10.1 Inches TFT LCD Display 1280×RGB×800, Touch Screen						
AC Paramete	er	Cp/Cs, Lp/Ls, Rp/Rs, $ Z $, $ Y $, R, X, G, B, θ , D, Q, V_{AC} , I_{AC}						
DC Paramete	er	V_{DC} , I_{DC} , DCR						
	Range	10Hz15MHz	10Hz30MHz	10Hz50MHz	10Hz80MHz	10Hz-130MHz		
Test	Resolution	1mHz						
Frequency	Relative frequency tolerance	≤±0.0007%						
	AC Voltage	5mV—2Vrms						
Test Level	Resolution	1mV						
lest Level	AC Current	50uA—20mArms						
	Resolution	10uA						
	Voltage	0V-±40V						
DC Bias	Resolution	1mV						
DC blas	Current	0mA-±100mA						
	Resolution	40μΑ						
Test terminal	configuration	Four Terminal Pai	r					
Output impedance		25Ω / 100Ω						
Typical Test time (Speed)			s 3: 40ms 4: 80m	ns 5: 400ms ge of the communication	on time, each frequen	cy test speed will be		

I. TH2851 Series Impedance Analyzer

Max Accuracy		1kHz: 0.08% 1MHz: 0.08% 2MHz: 0.5% 10MHz: 1% 130MHz: 5.0%			
Test Range		E: 1×10 ¹⁸			
Cs, Cp		-9.99999EF ∼ +9.99999EF			
Ls, Lp		-9.99999ЕН \sim +9.99999ЕН			
D		-9.99999E ∼ +9.99999E			
Q		-9.99999E ∼ +9.99999E			
R, Rs, Rp,	X, Z, R _{DC}	-9.99999Ε $\Omega \sim$ +9.99999Ε Ω			
G, B, Y		-9.99999ES ∼ +9.99999ES			
Vdc		-9999V ∼ +9999V			
ldc		-9999mA ∼ +9999mA			
θ_{r}		-999999rad ∼ +999999rad			
θ_d		180.0deg \sim +180.0deg			
Δ%		-999999% ~ +999999%			
Multi-function	n parameter list	1601 points, each point can be set to average, and each point can be sorted separately Sweep parameters: measurement parameters, test frequency, AC voltage, AC current, DC BIAS voltage, DC BIAS current			
	parameter	Frequency, ACV, ACI, DCV, DCI			
	Types	Logarithmic, linear, frequency segmentation			
	Points	2-1601			
Graphic scan	Number of channels	4			
	Number of curves	4 Per Channel			
	Split Screen	14 (Channel and Curve)			
Equivalent ci	rcuit analysis	3-element model: 4, 4-element model: 3			
Sorting		10 levels of sorting in LCR mode; each curve in scan mode is sorted individually			
Interface		RS232C, USB HOST, USB DEVICE, LAN, GPIB, HANDLER, VGA, HDMI			
Power-on warm-up time		60 Minutes			
Input Voltage		100-120VAC/198-242VAC Option, 47-63Hz			
Power consumption		Max 150VA			
Measuremen mm ³	t (WxHxD)	428x220x325			
Weight		14.5kg			

Standard Accessories

Three core power cord

TH26010 Gold-plated short circuit board

TH26005D Test fixture TH26047A Test fixture

TH26082A 100Ω Standard Resistance TH26061D_P1 Calibration Kit AR05TTS1000N

I. TH2839 Series Impedance Analyzer

Features

- High accuracy:Auto-balance bridge technology, 4-terminal pair
- High stability and consistency:Up to 15 test ranges
- High speed:Up to 7.7ms
- High resolution:7- inch, 800×600
- 201 Points List Sweep Function
- Multi-parameter Graphic Sweep Function
- Varactor diode automatic polarity function
- 10 bins sorting, sorting result with sound and light alarm
- Storage space: Internal: 40 groups of setting files
 USB External: 500 groups of setting files, data log files and image files
- Simultaneous testing for Ls-R_{DC}
- High compatibility: Support SCPI commands, compatible with KEYSIGHT E4980A, E4980AL, HP4284A etc.

Applications

Passive component:

Impedance parameter estimation and performance analysis of capacitor, inductor, magnetic core, resistor, piezoelectric devices, transformers, chip components and network components

Semiconductor component

Parasitic parameter test and analysis of LED driver integrated circuit C-VDC features of varactors

Parasitic parameter analysis of transistors or integrated circuit

Other components

Impedance assessment of printed circuit boards, relays, switches, cables, batteries

Dimension(mm): 400mm(W)x132mm(H)x425mm(D)

Weight: 15kg

Dielectric material

Dielectric constant and loss angle evaluation of plastics, ceramics and other materials

Magnetic materials

Magnetic permeability and loss angle assessment of ferrite, amorphous body and other magnetic materials

Semiconductor materials

Dielectric constant, electrical conductivity and C-V characteristics of semiconductor materials

Liquid crystal cell

Dielectric constant, elastic constant and C-V characteristics of liquid crystal cell

specificali						
Model		TH2839	TH2839A			
Display		7-inch TFT LCD display 800XRGBX600				
AC Test parame	ters	Cp/Cs, Lp/Ls, Rp/Rs, $ Z $, $ Y $, R, X, G, B, θ ,	D, Q, Vac, lac			
DC Test parame	ters	Rdc, Vdc, Idc				
	Range	20Hz-10MHz	20Hz — 5MHz			
Test Frequency	Highest resolution	1mHz				
	AC voltage	20Hz — 2MHz: 5mV — 2Vrms 2MHz — 10MHz: 5mV — 1Vrms	20Hz — 2MHz: 5mV — 2Vrms 2MHz — 5MHz: 5mV — 1Vrms			
	Resolution	100uV				
Test level	AC current	20Hz — 2MHz: 50uA—20mArms 2MHz — 10MHz: 50uA—10mArms	20Hz — 2MHz: 50uA — 20mArms 2MHz — 5MHz: 50uA — 10mArms			
	Resolution	1uA				
	DC Voltage	100mV — 2V				
	Resolution	100uV				
	Voltage	0V — ± 40V				
DC bias	Resolution	100uV				
DC blas	Current	0mA — ± 100mA				
	Resolution	1uA				
D.O ! !	Voltage range	-10V — 10V				
DC voltage source	Current range	-45mA — +45mA				
300100	Output impedance	100Ω				
Test terminal configuration		Four-terminal pair				
Output impedan	се	100Ω				
Typical measurement time (speed)		Fast: 7.7ms/time Medium: 120ms/time Slow: 230ms/time				

I. TH2839 Series Impedance Analyzer

Model		TH2839	TH2839A			
Highest accuracy		1kHz: 0.05% 1MHz: 0.05% 2MHz: 0.1% 5MHz: 0.5% 10MHz:1.0%	1kHz: 0.05% 1MHz: 0.05% 2MHz: 0.1% 5MHz: 0.5%			
Cable length		0, 1, 2				
	Parameters	FREQ, ACV, ACV/I, DCV/I, DC voltage source	FREQ, ACV, ACV/I, DCV/I, DC voltage source			
Graph sweep	Туре	Logarithm, linearity				
	Sweep points	51, 101, 201, 401 or 801				
Equivalent circu	it analysis	Additional purchase required				
Interface		USB HOST, USB DEVICE, LAN, HANDLER, RS232C, Optional: GPIB				
Warm-up time		60 minutes				
Input voltage		Optional 100-120VAC/198-242VAC, 47-63Hz				
Power consumption		80VA				
Dimension(WxHxD)mm ³		400 x 132 x 425				
Weight		15kg				

Standard Accessories

Three core power cord

TH26010 Gold-plated short circuit board

TH26047 Test fixture

TH26005C Four-terminal test fixture
TH26011BS 4 terminal pair Kelvin test clip leads

I. TH2840 Series Precision LCR Meter

Features

- The test speed is as high as 1800 times/s (>10kHz), without relay action time
- Test level up to 20Vrms
- The bias voltage is built-in ±40V/±100mA/2A
- Industry-friendly user experience: Linux bottom layer, built-in help file
- 10.1 inch 1280×800 capacitive touch screen
- Approximately 100M setting file storage space in the machine, and massive U disk setting file storage capacity
- Provide host computer to support early model file format conversion to ensure compatibility

standard standard standard s

Dimension: 430mm(W)x177mm(H)x265mm(D)

Weight: 11kg

Applications

■ Passive component:

Impedance parameter estimation and performance analysis of capacitor, inductor, magnetic core, resistor, piezoelectric devices, transformers, chip components and network components

Semiconductor component

Parasitic parameter test and analysis of LED driver integrated circuit C-VDC features of varactors

Parasitic parameter analysis of transistors or integrated circuit

Other components

Impedance assessment of printed circuit boards, relays, switches, cables, batteries

Dielectric material

Dielectric constant and loss angle evaluation of plastics, ceramics and other materials

Magnetic materials

Magnetic permeability and loss angle assessment of ferrite, amorphous body and other magnetic materials

Semiconductor materials

Dielectric constant, electrical conductivity and C-V characteristics of semiconductor materials

Liquid crystal cell

Dielectric constant, elastic constant and C-V characteristics of liquid crystal cell

Model		TH2840A		TH2840B			
	Display	10.1" Toucl	0.1" Touch Screen				
Display	Ratio	16:9	6:9				
	Resolution	1280×RGE	3×800				
	Test Mode	Four Parar	meter Selectable				
Parameter	AC	Cp/Cs, Lp	o/Ls, Rp/Rs, Z , Y , R, X,	$G, B, \theta, D, Q, V_{AC}, I_{AC}$			
	DC	R_{DC} , V_{DC} ,	I _{DC}				
	Range	20Hz-500k	(Hz	20Hz-2MHz			
	Accuracy	0.01%					
		0.1mHz	(20.0000Hz-99.9999Hz)				
		1mHz	(100.000Hz-999.999Hz)				
Frequency	Resolution	10mHz	(1.00000kHz-9.99999kHz)				
	resolution	100mHz	(10.0000kHz-99.9999kHz)				
		1Hz	(100.000kHz-999.999kHz)				
		10Hz	(1.00000MHz-2.00000MHz)				
1011	Rated value (ALC	Set the voltage as the Hcur voltage when the test terminal is open					
AC test	OFF)	Set the current to be the current flowing from Hcur when the test terminal is short-circuited					
signal mode	Constant value	Keep the v	oltage on the DUT the same a	s the set value			
	(ALC ON)	Keep the c	current on the DUT the same as	s the set value			

I. TH2840 Series Precision LCR Meter

	40.77.11	F≤1MHz 5mVrms-20Vrms
	AC Voltage	5mVrms-20Vrms F > 1MHz 5mVrms-15Vrms
	Accuracy	± (10%×Set Value+2mV) (AC less than 2Vrms) ± (10%×Set Value+5mV) (AC > 2Vrms)
		1mVrms (5mVrms-0.2Vrms)
		1mVrms (0.2Vrms-0.5Vrms)
		1mVrms (0.5Vrms-1Vrms)
	Resolution	10mVrms (1Vrms-2Vrms)
Test Level		10mVrms (2Vrms-5Vrms)
TOST LOVE		10mVrms (5Vrms-10Vrms)
		10mVrms (10Vrms-20Vrms)
	AC Current	50μArms-100mArms
		10µArms (50µArms-2mArms)
	Resolution(100Ω	10µArms (2mArms-5mArms)
	Internal Resistance)	10µArms (5mArms-10mArms)
	ixesistarice)	100μArms (10mArms-20mArms)
		100μArms (20mArms-50mArms) 100μArms (50mArms-100mArms)
	Voltage	100mV-20V
	voltage	1mV (0V-1V)
	Resolution	10mV (1V-20V)
R _{DC} Test	Current	0mA-100mA
		10μA (0mA-10mA)
	Resolution	100μA (10mA-100mA)
	Voltage	0V-±40V
	Accuracy	AC≤2V 1%× Set Value+5mV
	,	AC>2V 2%×Set Value+8mV
DC Bias	Resolution	1mV (0V-1V)
	Cumant	10mV (±1V- ±40V)
	Current	0mA-±100mA 10μA (0mA-10mA)
	Resolution	100μA (10mA-100mA)
Built-in	Current	0mA-2A
current	Accuracy	I>5mA ± (2%×Set Value+2mA)
source	Resolution	1mA
Test termina	al configuration	Four Terminal Pair
Test cable I		Om
0		30Ω, ±4%@1kHz
Output imp	edance	100Ω, ±2%@1kHz
computation	n	The absolute deviation from the nominal value Δ , the percentage deviation from the nominal value Δ %
Equivalent	way	Series, Parallel
Calibration	function	OPEN, SHORT, LOAD
Measureme	ent average	1-255
Range sele	ction	AUTO, HOLD
Range	LCR	$100m\Omega, \ 1\Omega, \ 10\Omega, \ 20\Omega, \ 50\Omega, \ 100\Omega, \ 200\Omega, \ 500\Omega, \ 1k\Omega, \ 2k\Omega, \ 5k\Omega, \ 10k\Omega, \ 20k\Omega, \ 50k\Omega, \ 100k\Omega$
configuration	R _{DC}	1Ω , 10Ω , 20Ω , 50Ω , 100Ω , 200Ω , 500Ω , $1k\Omega$, $2k\Omega$, $5k\Omega$, $10k\Omega$, $20k\Omega$, $50k\Omega$, $100k\Omega$
		Fast+: 0.56ms(1800 times/s) Fast: 3.3ms
Measuring	time (ms)	Middle: 90ms
		Slow: 220ms
Highest acc	curacy	0.05% (refer to the instruction manual for details)
Measureme	ent display range	
Cs, Cp		0.00001pF-9.99999F
Ls, Lp		0.00001µH-99.9999kH
D		0.00001-9.99999
Q		0.00001-99999.9
R, Rs, Rr	x, x , x , x	0.001 m Ω -99.999Μ Ω

I. TH2840 Series Precision LCR Meter

G, B, Y			0.00001µs-99.9999S			
V _{DC}			±0V-±999.999V			
I _{DC}			±0A-±999.999A -3.14159-3.14159			
$\theta_{\rm r}$			-3.14159-3.14159			
θ_{d}			-179.999°-179.999°			
Δ%			± (0.000%-999.9%)			
	Dots Nu	mber	201 points, average times can be set for each point, and each point can be sorted separately			
	Paramet	ter	Test frequency, AC voltage, AC current, DC BIAS voltage, DC BIAS current (100mA), DC BIAS current (2A)			
Multi- function parameter	Trigger r	node	Sequence SEQ: After a trigger, measure at all sweep points, and /EOM/INDEX will output only once Step STEP: Perform a sweep point measurement each time it is triggered, and each point outputs / EOM/INDEX, but the list sweep comparator result is only output at the last /EOM			
list scan	Other fe	atures	Scan parameters and test parameters have multiple copy functions Delay can be set for each scan point			
	Compara	ators	Each sweep point can measure up to four test parameters, each parameter can set upper and lower limits, all test parameters are qualified, output PASS signal, otherwise output FAIL signal, no upper and lower limits are set, no judgment			
	Scan po	ints	51, 101, 201, 401, 801 Optional			
	The resu	ults	The extreme value of each parameter and the sweep parameter value at the point where the cursor is located and the corresponding test parameter value			
	Scan tra	jectory	1-4 test parameters can be selected arbitrarily, the scanning curve can be divided into one screen, two screens, or four screens			
Graphic	Display	range	Real-time automatic, locked			
scan	Coordina	ate ruler	Logarithmic, linear			
	Scan pa	rameters	Frequency, AC voltage, AC current, DCV BIAS / DCI BIAS (100mA) / DCI BIAS (2A)			
	Trigger	single	Manually trigger once, and complete a scan from the start point to the end point, and the next trigger signal starts a new scan			
	mode	continuous				
	Results	save	Graphics, files			
	Bin		10Bin, PASS, FAIL			
	Bin devi	ation setting	Deviation value, percentage deviation value, off			
	Bin mod	е	Tolerance, continuous			
	Bin cour	nt	0-99999			
Comparators	Discrimi	nation	Up to four parameter limit ranges can be set for each file. The corresponding file number is displayed within the setting range of the four test parameter results. If the maximum file number range is exceeded, FAIL is displayed. The test parameters without the upper and lower limits are automatically ignored.			
	PASS/F/indicatio		Meet Bin1-10, the PASS light on the front panel is on, otherwise the FAIL light			
Data cache			201 measurement results can be read in batches			
Ctore cell	Inside		About 100M non-volatile memory test setting file			
Store call	External	USB	Test setting file, screenshot graph, record file			
Keyboard lo	ck		The front panel keys can be locked, other functions to be expanded			
	USB HC	ST	2 USB HOST ports, can connect mouse and keyboard at the same time, only one U disk can be used at the same time			
	USB DE	VICE	Universal serial bus socket, small type B (4 contact positions); compatible with USB TMC-USB488 and USB2.0, the female connector is used to connect an external controller.			
Interface	LAN HANDLE	≣R	10/100M Ethernet adaptive Used for Bin signal output			
	External control	DC BIAS	Support TH1778A			
	RS232C		Standard 9-pin, cross			
	RS485		Can accept modification or external RS232 to RS485 module			
Power-on w	arm-up ti	me	60 Minutes			
Input voltage			100-120VAC/198-242VAC Option, 47-63Hz			
Power cons			More than 130VA			
Size (WxHx			430x177x265			
Weight (kg			11kg			
Wolght (kg)			-			

I. TH2838 Series Precision LCR Meter

Features

- High accuracy:Adopt Auto-balance bridge technology, 4-terminal pair
- High stability and consistency:Up to 15 ranges
- High speed:Up to 5.6ms
- High resolution:7- inch, 800×600
- High power:

Signal source:Voltage up to 20Vrms(only TH2838H)

Current up to 100mA(only TH2838H)

DC bias:Voltage up to ± 40V(only TH2838H)

Current up to 100mA

Up to 120A when controlling 6 sets of TH1778 series DC Bias Current Source by external DC Bias interface Independent Voltage Source: ±10V programmable output (only TH2838H)

- Multi-parameter Graphic Sweep Function
- Arithmetical operation
- 10 bins sorting, sorting result with sound and light alarm
- Huge storage space:
 - Internal: 40 groups of setting files, 10 groups of gif image files External: 500 groups of setting files through USB storage
- High compatibility: Support SCPI commands, compatible with KEYSIGHT E4980A, E4980AL, HP4284A etc.

 ϵ

RS232	USB HOST	USB DEVICE	HANDER	LAN	GPIB
standard	standard	standard	standard	standard	option

TH2838 Series

Dimension (mm): 400(W) x 132(H) x425(D)

Net weight: 15kg

Application

1.Passive component

Impedance parameter estimation and performance analysis of capacitor, inductor, magnetic core, resistor, piezoelectric devices, transformers, chip components and network components

2.Semiconductor component

Parasitic parameter test and analysis of LED driver integrated circuit C-VDC features of varactors Parasitic parameter analysis of transistors or integrated circuit

3.Other components

Impedance assessment of printed circuit boards, relays, switches, cables, batteries

- 4. Dielectric material
- Dielectric constant and loss angle evaluation of plastics, ceramics and other materials
- 5.Magnetic materials

Magnetic permeability and loss angle assessment of ferrite, amorphous body and other magnetic materials

6.Semiconductor materials

Dielectric constant, electric conductivity and C-V characteristics of semiconductor materials Liquid crystal cell of dielectric constant, elastic constant and C-V characteristics of liquid crystal cell

Model		TH2838	TH2838H	TH2838A		
Test Signal Source						
Output impedar	псе	100Ω, ±1% @1kHz	100Ω, ±1% @1kHz			
	Range	20Hz-2MHz		20Hz-1MHz		
		20.0000Hz - 99.9999Hz	0.1mHz			
		100.000Hz - 999.999Hz	1mHz			
Frequency	Resolution	1.00000kHz - 9.99999kHz	10mHz			
	Resolution	10.0000kHz - 99.9999kHz	0.1Hz			
		100.000kHz - 999.999kHz	1Hz			
		1.00000MHz - 2.00000MHz	10Hz			

I. TH2838 Series Precision LCR Meter

AC test signal			cur voltag cur currer l): Γ is the sa			
	Voltage range	5mVrms 2Vrms		F≤1MHz 5mVrms 20Vrms F>1MHz 5mVrms 15Vrms	5mVrms 2Vrms	
		5mVrms 0.2Vrms	100μVrn	ns		
		0.2Vrms 0.5Vrms 200μVrms				
		0.5Vrms 1Vrms	500μVrr	ms		
	Resolution	1Vrms 2Vrms	1mVrms			
		2Vrms 5Vrms	2mVrms			
		5Vrms 10Vrms	5mVrms			
AC signal		10Vrms 20Vrms	10mVrm	S		
	Current range	50μArms 20mArms		50μArms100mArms	50μArms 20mArms	
		50μArms 2mArms	1 μ A	rms		
	Resolution	2mArms 5mArms	2 μ A r	rms		
		5mArms 10mArms 5 μArms				
		10mArms 20mArms 10μArms				
		20mArms 50mArms 20μArms				
		50mArms100mArms 50μArms				
	Voltage range	100mV — 2V				
Rdc test	Resolution	100µV				
Ruc test	Current range	0mA— 20mA				
	Resolution	1μΑ				
	Voltage range	0V — ± 10V		0V — ± 40V	0V — ± 10V	
		0V 5V 100	μ V			
	Resolution	5V 10V 1m	V			
DC Bias		10V 20V 2m	٦V			
DC Blas		20V 40V 5mV				
	Current range	0mA— ± 100mA				
	Resolution	0 A 50mA 1μ	A			
	resolution	50mA 100mA 10μA				
	Voltage range			-10V 10V		
	Resolution			1mV		
Voltage source	Current range			-45mA +45mA		
	Output impedance			100Ω		
Display						
Dimensions /typ		7-inch (diagonal)TFT LC	D display			
Proportion		16:9				
Resolution		800×RGB×480				
Test function						

I. TH2838 Series Precision LCR Meter

Test parameter		Cp-D,Cp-Q,Cp-G,Cp-Rp Cs-D,Cs-Q,Cs-Rs Lp-D, Lp-Q, Lp-G, Lp-Rp, Lp-Rdc Ls-D, Ls-Q, Ls-Rs, Ls-Rdc, Rdc R-X, Z-θd, Z-θr G-B, Y-θd, Y-θr Vdc-ldc							
Mathematics fur	nction	A(X+B)+C,	X is test paramet	er, A, B,C is i	nput parameter				
Equivalent circu	iit	Series, para	allel						
Deviation meas	urement		viation Δ compare deviation $\Delta\%$ con						
Calibration func	tion	OPEN, SHO	ORT, LOAD						
Range selection	1	AUTO, HOL	.D						
Range	LCR	100mΩ, 1Ω ranges	, 10Ω, 20Ω, 50Ω,	100Ω, 200Ω	, 500 Ω, 1k Ω, 2k Ω	, 5k Ω, 10k Ω,	20k Ω, 50k Ω, 10 0)kΩ, total 15	
	Rdc	1Ω, 10Ω, 20	0Ω, 50Ω, 100Ω, 20	0 0Ω, 5 00Ω, 1 I	$k\Omega$, $2k\Omega$, $5k\Omega$, $10k$	Ω , 20 $k\Omega$, 50 $k\Omega$	$k\Omega$, 100 $k\Omega$, total 1	5 ranges	
Trigger mode		INT, MAN, E	EXT, BUS						
Trigger delay		0 s 999 s	resolution 100us						
Test terminal co	nfiguration	Four-pair							
Test cable lengt	h	0m, 1m							
Test average		1-255 times	i						
	Speed mode	20Hz	100Hz	1kHz	10kHz	100kHz	1MHz	2MHz	
Test time (ms)	FAST	330	100	20	7.7	5.7	5.6	5.6	
(1115)	MED	380	180	110	92	89	88	88	
	LONG	480	300	240	230	220	220	220	
Test display ran	ge a 1×10 ⁻	¹⁸ ; E 1×10 ¹⁸							
Cs, Cp		±1.000000 aF 999.9999 EF							
Ls,Lp		±1.000000	aH 999.9999 El	1					
D		±0.000001	±0.000001 9.999999						
Q		±0.01 99999.99							
R, Rs, Rp, X, Z,	Rdc	±1.000000 aΩ 999.9999 EΩ							
G,B,Y		±1. 000000 aS 999.9999 ES							
Vdc		±1.000000	aV 999.9999 E\	/					
Idc		±1.000000 aA 999.9999 EA							
θг		±1.000000 a rad 3.141593 rad							
θd		±0.0001 de	g 180.0000 deg						
Δ%		±0.0001% 999.9999%							
t		-99.99°C 1000.00°C							
Turn Ratio (extension pending)		±0.000000 1000.000							
Basic test accuracy		0.05% (the	details refer to the	instruction)					
List sweep									
Sweep points		Up to 201 p	oints						
Sweep Paramet	ters	Test freque	ncy, AC voltage, A	C current, DC	C BIAS voltage, D	C BIAS curre	nt		
	SEQ	Once trigge	red, test at the sw	eep points. /	EOM/INDEX will b	e output one	time.		
Trigger mode	STEP		ed, test at one swee		I/INDEX will be outp	out at each poi	int, but the list swee	p comparator	

I. TH2838 Series Precision LCR Meter

List sweep comparator		Set one pair of lower limit and upper limit for each sweep point. Optional: judge through the first sweep parameter / judge through the second sweep parameter / not used in each limit.			
List sweep time tag		In SEQ mode, set the trigger point to 0, by defining the time, the test start time can be recorded at each measurement point.			
Graph sweep ar	nalysis				
Sweep points		51, 101, 201, 401 or 801			
Sweep trace		Primary or secondary parameters			
Display range		AUTO, HOLD			
Coordinate scal	е	Logarithm, linearity			
Sweep paramet	ers	Test frequency, ACV, ACI, DCV BIAS/DCI BIAS, DC voltage source			
Sweep result dis	splay	Maximum value/ minimum value of primary/secondary parameter, primary/secondary value of the setting point			
Sweep graph st	orage	Sweep graphs can be saved to the interior FLASH, external USB storage or uploaded to the upper computer.			
Comparator					
Dincorting	Primary parameter	9 BIN, OUT_OF_BINS, AUX_BIN, LOW_C_REJECT			
Bin sorting Secondary parameter		HIGH, IN, LOW			
Bin limit setup		Absolute value, deviation value, percentage deviation value			
Bin count		0 999999			
PASS/FAIL indic	cation	When the primary parameter is one of the 9 BINs and the secondary parameter is IN, the PASS light on the front panel is ON, or FAIL light is ON.			
Test auxiliary fu	nction				
Data buffer stora	age function	201 test results can be read in batches			
Storage/Calling	function	100 groups of test setting files in the internal nonvolatile memory 099 100 groups of test setting files in the USB storage 0—99			
Keyboard locko	ut function	Front panel keys can be locked			
USB HOST port	t	Universal Serial Bus socket, A class; FAT16/FAT32 format. USB flash disk storage or barcode scanning			
USB DEVICE port		Universal Serial Bus socket, small size B class (4 contact position); Correspond to USBTMC-USB488 and USB 2.0 The female joint is used for connecting the external control unit.			
LAN		10/100BaseT Ethernet, 8pins, two selectable speed mode			
HANDLER inter	face	Be used for bin sorting signal output			
External DC BIAS control		Control TH1778A/TH1778AS Bias current source, at most 1 set of TH1778+5 sets of TH1778S (120A MAX)			
RS232					
GPIB (option)		24 pin D-Sub port (D-24 class), the female joint is compatible with IE	EE488.1, 2 and SCPI.		
, ,		, , , , , , , , , , , , , , , , , , , ,			

Standard Accessories

Three core pov TH26010	ver cord Gold-plated short circuit board	TH26011BS TH26005C	4 terminal pair Kelvin test clip leads Four-terminal test fixture
Options			
TH26108C	Four-terminal-pair patch test fixture	TH26008A	SMD component test fixture
TH26007A	Magnetic ring test fixture	TH26009B	SMD Kelvin test tweezers
TH26047	Four-terminal test fixture	TH26048	Four-terminal test fixture
TH26063	Four-terminal test fixture	TH26062A	Four-terminal test fixture
TH2838-GPIB	GPIB Interface board	TH26033	GPIB Control cable

I. TH2836 Series Precision LCR Meter

Features

- High precision: using automatic balancing bridge technology, four-terminal pair test configuration
- High speed: the fastest test speed is 5.6ms
- High resolution: 7 inches, 800×480 resolution
- 10-point multi-parameter list sweep function
- Mathematical operation function
- Automatic polarity function of varactor diode
- One-key screenshot function
- One key recording function
- 10-level sorting function, sound and light alarm for sorting results
- Large storage space:

Built-in: 40 sets of setting files

Expansion: 500 sets of setting files, image files, and data recording files can be stored through USB memory

 High compatibility: support SCPI commands, compatible with KEYSIGHTE4980A, E4980AL, HP4284A

NEW

RS232		USB DEVICE			GPIB
standard	standard	standard	standard	standard	option

TH2836 Series

Dimension (mm): 400(W) x 132(H) x425(D)

Net weight: 15kg

Application

■ Passive components:

Capacitors, Inductors, Magnetic Cores, Resistors, Piezoelectric Devices, Transformers, Chipsets

Impedance parameter evaluation and performance analysis of hardware and network components, etc.

Semiconductor components:

Test and analysis of parasitic parameters of LED drive integrated circuits; C-V DC characteristics of varactor diodes; analysis of parasitic parameters of transistors or integrated circuits

Other components:

Impedance evaluation of printed circuit boards, relays, switches, cables, batteries, etc.

Dielectric material:

Dielectric constant and loss angle evaluation of plastics, ceramics and other materials

■ Magnetic material:

Permeability and loss angle evaluation of ferrite, amorphous and other magnetic materials

Semiconductor materials:

Dielectric constant, conductivity and C-V characteristics of semiconductor materials

LCD unit:

C-V characteristics such as dielectric constant and elastic constant

Model		TH2836		
Display		7 inch TFT LCD Display 800×RGB×480		
AC Parameter	S	Cp/Cs、Lp/Ls、Rp/Rs、 Z 、 Y 、R、X、G、B、θ、D、Q、Vac、lac		
DC Parameter	S	Rdc, Vdc, Idc		
Test	Range	4Hz-8.5MHz		
Frequency Resolution 1		1mHz		
	AC Voltage	4Hz-1MHz: 5mV-2Vrms 1MHz-8.5MHz: 5mV-1Vrms		
	Resolution	100μV		
Test Electric Level	AC Current	4Hz-2MHz: 50μA-20mArms 2MHz-8.5MHz: 50μA-10mArms		
	Resolution	1μΑ		
	DC Voltage	100mV-2V		
	Resolution	100μV		

I. TH2836 Series Precision LCR Meter

	Voltage	0V-±10V			
DC Bias	Resolution	100μV			
DC Blas	Current	0mA-±100mA			
	Resolution	1μΑ			
Test terminal co	onfiguration	Four-terminal pair			
Cable Length		0、1米			
Output Impeda	ince	100Ω			
Typical Measur	rement Time (speed)	Fast: 5.6ms Medium: 120ms Slow: 230ms			
Highest accura	асу	1kHz: 0.05% 1MHz: 0.05% 2MHz: 0.1% 5MHz: 0.5% 8.5MHz: 1.0%			
Displany Rang	е	a: 1×10 ⁻¹⁸ ; E: 1×10 ¹⁸			
Cs. Cp		±1.00000aF-999.999EF			
Ls, Lp		±1.000000aH-999.999EH			
D		±0.00001-9.99999			
Q		±0.01-99999.9			
R、Rs、Rp、)	K, Z, Rdc	±1.00000aΩ-999.999EΩ			
G,B,Y		±1.00000aS-99.9999ES			
Vdc		±1.000000aV-999.9999EV			
ldc		±1.00000aA-999.999EA			
θr		±1.00000rad-3.14159rad			
θd		±0.0001deg-180.000deg			
Δ%		±0.0001%-999.999%			
Multifunction Li	ist Scan	10 dots. Parameter: Measurement parameter, test frequency, AcVoltage, AC current, DC Bias voltage and DC Bias current.			
Graph sweep		Optional			
Interface		USB HOST、USB DEVICE、HANDLER、RS232C Optional: GPIB			
Warm-up time		60 minutes			
Input voltage		100-120VAC/198-242VAC, 47-63Hz			
Power consum	ption	80VA			
Dimension (W	/xHxD)mm³	400x132x425			
Weight		15kg			

I. TH283X Series Compact LCR Meter

Features

- Low cost, high performance, small size
- 4.3 inch TFT LCD Display
- Soft power switch
- Selectable Chinese-English operation language
- Max. 200kHz test frequency
- Max. 6 digit reading resolution
- 10mVrms-2.0Vrms programmable signal level, built-in 0 - ± 5V/50mA bias source
- DCR, 50mV-2V programmable test level, resolution 10μΩ
- Ls-Rd / Lp-Rd Function (L, Rd display simultaneously) *
- Highest test speed 13ms/time
- Selectable $30\Omega/100\Omega$ signal source impedance
- V/I monitor and auto level adjustment function
- Built-in comparator, 10 bins sorting and count function
- File storage and firmware update through U disk
- RS232, RS485, USB, HANDLER, GPIB interface
- * Rd means DCR.

Applications

■ Passive components:

Evaluation of Impedance Parameters for Capacitors, Inductors, Cores, Resistors, piezoelectric devices, Transformers, Chip Components, and Network Components

RS232	USB HOST	USB DEVICE	HANDER
	standard		standard

GPIB	RS485	SCANNER
option	option	option
		01 15 110 100

TH283X Series

Rack mount (mm): $215(W) \times 88(H) \times 335(D)$ Dimension (mm): $235(W) \times 105(H) \times 360(D)$ Net weight: 3.6 kg

Other components:

Impedance evaluation of printed circuit boards, relays, switches, cables, batteries, etc.

Model		TH2830	TH2832		
Basic	LCRZ	0.05%	0.05%		
measurement	DCR	0.1%			
accuracy (See details in technical specification)	Calibration condition	Warm up time: ≥ 30 minutes; Environment signal level: 1Vrms; Corretion: after OPEN, Testing cable length: 0 m	·		
Test signal freque	ency	50Hz-100kHz , Continuous	20Hz-200kHz, Continuous		
Signal source ou	tput impedance	Selectable 30Ω, 100Ω, ±1% @1kHz			
		10mV—2Vrms			
	Normal	Resolution: 10mV, Accuracy: 10% x setting voltage+2mV			
		100μA—20mArms			
AC test signal		Resolution: 0.1mA			
level			20mV—1Vrms		
	Constant level		Resolution: 10mV,Accuracy: 10%		
	(ALC ON)		200μA—10mArms		
			Resolution: 0.1mA		
DCR test signal I	ovol	1V DC	5mV—2V DC		
DOK lest signal i	CVCI		Resolution: 0.5mV		

I. TH283X Series Compact LCR Meter

				0V— + 5V		
				Resolution: 0.5mV, Accuracy: 1%		
DC bias voltage source				0mA—± 50mA		
				Resolution: 0.5µA		
Test parameters			, X, B, R, G, D, Q, θ, DCR	Nesolution. 0.5µA		
•			- 99.9999 MΩ			
DCR display range LCR parameters display range		Z , R, X Y , G, B C L D Q θ(DEG) θ(RAD) Δ%	$\begin{array}{lll} Y , G, B & 0.00001 \mu s 99.9999 s \\ C & 0.00001 p F 9.99999 F \\ L & 0.00001 \mu H 99.9999 k H \\ D & 0.00001 9.99999 \\ Q & 0.00001 99999.9 \\ \theta(DEG) & -179.999^{\circ} 179.999^{\circ} \\ \theta(RAD) & -3.14159 3.14159 \end{array}$			
Display digits		6		6		
Measurement tin	ne (≥10 kHz)	Fast: 75 me	Fast: 75 meas/sec(13ms), Medium:11 meas/sec(90 ms), Slow: 2.7meas/sec(370 ms)			
Equivalent circuit	t	Serial, Parallel				
Range mode		Auto, Hold				
Trigger mode		Internal, Manual, External, Bus				
Average time		1–255				
Correction		Open, Short, Load				
Math operation		Direct reading, ∆ABS, ∆%				
Trigger delay tim	e setting	0 - 60.000s, 1ms steps				
Step delay time s	setting	0 - 60.000s, 1ms steps				
List Sweep	List Sweep		st sweep AC voltage/current, internal/ ext p point can be sorted separately.	ernal bias voltage/ current can be swept.		
		10 bins, BIN1–BIN9, NG, AUX				
Comparator function		Bin count function				
		PASS, FAIL LED display on front panel				
Built-in Storage		Internal 100 LCRZ instrument setting files, 201 times test results				
USB Storage		Instrument s	setting files , measurement result	CSV files, printed screen (GIF format)		
	Control interface	HANDLER				
Interface	Communication interface	USB HOST,	RS232C, RS485(option), GPIB(option)		
	Storage interface	USB DEVIC	E (U-disk storage)			

Standard Accessories

Three core power cord

TH26010 Gold-plated short circuit board TH26011CS 4 terminal pair Kelvin test clip leads

TH26048A Four-terminal test fixture

I. TH2810B+ LCR Meter

Features

- 100Hz,120Hz,1kHz,10kHz 4 typical test frequencies
- 4.3 inch TFT liquid crystal display, Chinese and English optional operation interface
- 6-digit reading resolution
- Maximum test speed:12.5ms, support low frequency and high
- 10 bins sorting, test sorting is more perfect
- 100 sets of LCRZ instrument setting files, 10 measurements
- Soft power switch
- Support 110V/220V two power supply voltages
- 10-point list sweep, support multi-frequency test sorting
- Ultra-low signal source output offset (<100µV), meeting the needs of large inductor, common mode choke inductor test
- Super impact protection
- Power on state lock button;
- Empty fixture judgment
- Data logging function
- Screen capture function
- Interface function, timing, trigger delay, etc. are more complete

TH2810B+(TH2810B Upgraded)

Support SCPI, MODBUS protocol Rack mount (mm): 215(W) x 88(H) x 335(D) Dimension (mm): 235(W) x 105(H) x360(D) Weight: 3.6kg

Applications

Passive components:

Evaluation of Impedance Parameters for Capacitors, Inductors, Cores, Resistors, piezoelectric devices, Transformers, Chip Components, and Network Components

Other components: Impedance evaluation of printed circuit boards, relays, switches, cables, batteries, etc.

Specifications

Model	TH2810B+
Basic accuracy	0.1%
Test frequency	100Hz,120Hz,1kHz,10kHz
Test parameters	L, C, R, $ Z $, D, Q, X, θ d, θ r, Vm, Im, \triangle %
V/I monitor	Yes
AC test signal level	0.1Vrms,0.3Vrms,1Vrms
Signal source internal resistance	10Ω, 100Ω
Test terminal configuration	5-terminal
Test speed (ms/time)	Fast: 19ms; Medium:83ms; Slow: 333ms F≤120Hz Fast :4XT+3ms
Zero clearing	Open, Short, Load
List sweep	·10-point list sweep ·Each scan point can be individually sorted, support multi-frequency combined test sorting ·Scanning test for frequency and AC voltage
Equivalent Circuit	Series, Parallel
Range mode	AUTO, HOLD
Trigger mode	Internal, External, Manual, Bus
Average times	1-255
Arithmetical operation	Direct reading, $\triangle ABS$, $\triangle \%$
Delay	Trigger delay, step delay: 0—60.000s, 1ms step
General function	Series, parallel equivalent mode, calibration: open circuit, short circuit, range selection: automatic, manual, trigger mode: INT, MAN, EXT, BUS, keyboard lock function
Comparator	10 bins sorting,BIN1-BIN9,NG,AUX; Bin count function PASS, FALL front panel LED display
Nonvolatile storage	100 sets of LCRZ instrument setting files, 10 test results
External USB storage	Instrument setting file, CSV data file

Standard Accessories

Three core power cord

TH26048A 4-terminal test fixture TH26011CS 4-terminal Kelvin test cable TH26010 Gilded shorting plate

I. TH2822 Series Handheld LCR Meter

Features

- Max. Basic accuracy: 0.25%
- Maximum test signal frequency: 100kHz
- Selectable test signal level
- With DCR function
- Enhanced protection capability of input terminal impact
- 40000 counts for primary parameter, D/Q resolution 0.0001
- Typical ultra-low consumption: 25mA
- Innovatively compatible terminal configuration: 5-terminal test slot and 3-terminal rubber jack
- Intellectualized auto LCR function
- AC test speed up to 4 meas/sec (DCR: 3 meas/sec), fast automatic range switch design
- Constant 100Ω output impedance
- Percentage display and 4-tolerance comparator: 1/5/10/20%
- Battery charge in startup & shutdown
- Test terminal protection function
- Data-hold, Max./Min./Average value recording
- Real-time function configuration selection and working condition hold capacity
- Standard configuration Mini USB communication interface and SCPI command set
- Free FastAccess PC communication software on our website
- Gorgeous dual-color cast shell

((

TH2822 series

Dimension (mm): 90(W) x 190(H) x40(D) Weight: 0.35kg

Applications

Passive components:
 Evaluation of Impedance Parameters for Capacitors, Inductors,
 Cores, Resistors, piezoelectric devices, Transformers, Chip
 Components, and Network Components

Other components:
 Impedance evaluation of printed circuit boards, relays,
 switches, cables, batteries, etc.

Brief Introduction

■ With its advanced impedance test technology, Tonghui has launched TH2822 series handheld LCR meters. This series currently possess the most powerful functions and outstanding performance in this industry comparable with bench LCR meters. Meanwhile it is the achievement of Tonghui after years of efforts and research in the passive-component testing field.

TH2822 series apply the ultra-low power consumption design and high density SMD assembly techniques and can simultaneously display primary and secondary parameters on a LCD display with backlight. The dual-color shell is gorgeously once shaped; and functions are easy to operate. The test frequency is up to 100 kHz, the readings of primary parameter 40,000 counts and the resolution of dissipation factor 0.0,001. Accurate and convenient measurements of passive-components can be achieved in different occasions for a long time. In order to meet different market demand, multiple signal level and DCR test function are increased on TH2822D/E. The test accuracy can reach 0.1%. With USB interface, TH2822 series can conveniently communicate with a PC and be remotely controlled by a PC. In order to satisfy the increasing test requirements for SMD and balance the different needs for performance and price, two types of 4-terminal Kelvin test tweezers: TH26009C and TH26029C are optional for users' choice.

I. TH2822 Series Handheld LCR Meter

Specifications

Model	TH2822D	TH2822E			
Function	THE SEED	THEOLEE			
Test Parameter	Primary parameters: L / C / R / Z/ DCR Secondary parameters: D / Q / R /θ/ ESR				
Equivalent Circuit	Series and Parallel				
Parameter and Equivalent Mode	Hold, Auto				
Ranging Mode	Auto				
Measurement Terminals	3-terminal, 5-terminal				
Measuring Speed	4meas/sec, 1.5meas/sec				
DCR Measuring Speed	3meas/sec				
Calibration Function	Open, short				
Comparator Function	1%, 5%, 10%, 20%				
Input fuse	0.1A / 250V				
Interface	Mini-USB (virtual serial port)				
Test signal					
Test Frequency	100Hz, 120Hz, 1kHz, 10kHz,	100Hz, 120Hz, 1kHz, 10kHz, 100kHz			
Test Level	0.3 Vrms, 0.6 Vrms, 1 Vrms				
Output Resistance	100Ω				
Display					
Display	LCD Primary-Secondary dual display, with backlight (TH2822 not availa	ble)			
Reading	Max. Primary parameters: 40,000 digits, secondary parameters D/Q M	inimum resolution: 0.0001			
Basic accuracy	0.1%				
Measuring Range					
L	0.00μH - 1000.0H	0.000μH - 1000.0H			
С	0.00pF - 20.000mF	0.000pF - 20.000mF			
Z/R	0.0000Ω- 10.000ΜΩ				
DCR	0.0000Ω- 20.000ΜΩ				
ESR	0.0000Ω- 999.9Ω				
D	0.0000 - 9.999				
Q	0.0000 - 9999				
θ	0.00°- ±180.0°				
Power Requirements					
Battery model	TH2822 / A : IEC 6LR61, 9V alkaline battery TH2822C/D/E : LH-200H7C,8.4V Ni-MH 200mAH rechargeable battery				
AC power adapter	Input: 220V/50Hz, Output: 12V-15V(100Ω Load)				
Standby Currant	11μΑ				
Battery life	16 hours (typical) , new alkaline battery, with backlight off				
Auto power off	5min, 15min, 30min, 60min, OFF available; Factory Default : 5min				
Low voltage indicator	When battery voltage drops below 6.8V, low voltage indicator turns on.				

Standard Accessories

MINI USB Communication cable
TH26028 AC power adapter
TH26004F Two-terminal Test Cable
TH26010B Gilded shorting plate

TH26027AS 4 terminal Kelvin test cable
TH26029C SMD Kelvin test cable
8.4V Rechargeable battery

I. TH2840X Series Automatic Transformer Test System

Features

- The test speed is as high as 1000 times/s (>10kHz), without relay action time
- Test level up to 20Vrms
- The bias voltage is built-in ±40V/±100mA/2A
- Up to 288 test pins (only TH2840NX)
- Industry-friendly user experience: Linux bottom layer, built-in help file
- 10.1 inch 1280×800 capacitive touch screen
- Graphical pin association setting page, so that wiring is no longer a problem
- Lk setting does not need to input the leakage inductance pin, which is more intuitive
- Enhanced balance scanning function, from 5 points to 10 points
- Range switching adopts electronic switch, fast speed, long life, no noise
- Optional LCR function
- Approximately 100M setting file storage space in the machine, and massive U disk setting file storage capacity
- Provide host computer to support early model file format conversion to ensure compatibility

NEW

TH2840X Series

Dimension: 430mm(W)x177mm(H)x265mm(D) 【TH2840AX/BX】

430mm(W)x177mm(H)x405mm(D) 【TH2840NX】

Weight: 11kg [TH2840AX/BX] /17kg [TH2840NX]

Applications

- Switching transformer scanning test, comprehensive characteristics analysis.
- Network transformer scanning test, comprehensive characteristics analysis
- Discrete passive components (L, R, C) multi-channel scanning test
- Relay drive line package, contact resistance multi-channel scanning test
- Multi-channel DC resistance DCR scanning test
- Comprehensive test analysis of multiple passive components in impedance network

Model		TH2840AX	TH2840BX	TH2840NX				
	Display	10.1" Captive Touch S	Screen					
Display	Ratio	16:09	16:09					
	Resolution	1280×RGB×800						
Test PIN		20 PIN (By TH1806)		48 PIN (Can extend to 288PIN)				
	Range	20Hz-500kHz	20Hz-2MHz	20Hz-500kHz				
	Accuracy	0.01%						
		0.1mHz (20.0000Hz-99.9999Hz)						
Fraguenay		1mHz (100.000Hz-999.999Hz)						
Frequency	Resolution	10mHz (1.00000kHz-9.99999kHz)						
	Resolution	100mHz (10.0000kHz-99.9999kHz)						
		1Hz (100.000kHz-999.999kHz)						
		10Hz (1.00000MHz-2.00000MHz)						
	Rated Value (ALC	Set the voltage as the Hcur voltage when the test terminal is open						
AC Test	OFF)	Set the current to be the current flowing from Hcur when the test terminal is short-circuited						
Signal Mode	Constant Value	Keep the voltage on the DUT the same as the set value						
	(ALC ON)	Keep the current on the DUT the same as the set value						

I. TH2840X Series Automatic Transformer Test System

	Voltage	5mVrms-20Vrms	F<=1MHz 5mVrms-20Vrms	- 1/ 001/		
			F>1MHz 5mVrms-15Vrms	5mVrms-20Vrms		
		± (10%×the set value+				
Acc	curacy	±(10% the set value+5mV)(AC > 2Vrms)				
		1mVrms (5mVrms-0.2V				
		1mVrms (0.2Vrms-0.5Vrms)				
		1mVrms (0.5Vrms-1Vrn	•			
Res	solution	10mVrms (1Vrms-2Vrm	•			
1,00	Coldion	10mVrms (2Vrms-5Vrm	•			
Test Level		10mVrms (5Vrms-10Vr	•			
		10mVrms (10Vrms-20V	·			
AC	Current	50μArms-100mArms				
7.0	Curront	10μArms (50μArms-2m	Arms)			
		10μArms (2mArms-5m	•			
Res	solution (100 Ω	10μArms (5mArms-10n	•			
	rnal	100μArms (10mArms-2	•			
Res	sistance)	100μArms (20mArms-5	•			
		100μArms (50mArms-1				
Vol	ltage	100mV-20V	ounnins)			
۷٥١	itage	1mV (0V-1V)				
Res	solution	10mV (1V-20V)				
RDC Test	rrent	0mA-100mA				
_		10μA (0mA-10mA)				
Res	solution	100μA (10mA-100mA)				
Vol	Itage	0V-±40V				
_	-	AC<=2V 1%×the set vo	oltage+5mV			
Acc	curacy	AC>2V 2%×the set vol	tage+8mV			
5 5: # 5		1mV (0V - ±1V)				
Dc Bias * Res	solution	10mV (±1V - ±40V)				
Cui	rrent	0mA-±100mA				
Day		10μA (0mA-10mA)				
Kes	solution	100μA (10mA- 100mA)				
Built-In Cui	rrent	0mA-2A				
	curacy	I>5mA ± (2%×the set v	alue+2mA)			
Source Res	solution	1mA				
Output Immedance		30 Ω, ±4%@1kHz				
Output Impedance		100Ω, ±2%@1kHz				
LCR Function						
	thod	Arbitrary selection of fo	ur parameters			
Test Parameter AC	:	Cp/Cs, Lp/Ls, Rp/Rs, 2	Z , Y , R, X, G, B, θ, D, Q, VAC	C, IAC		
DC	;	RDC, VDC, IDC				
Test Terminal Confi	iguration	Four Terminal Pair				
Test Cable Length		0m				
Computation		The absolute deviation value $\Delta\%$	from the nominal value Δ , the $ $	percentage deviation from the nominal		

I. TH2840X Series Automatic Transformer Test System

Equivalent Way	у	Series, Parallel			
Calibration Fur	nction	OPEN, SHORT, LOAD			
Average Times	3	1-255			
Range Selection	on	AUTO, HOLD			
Range	LCR	100mΩ, 1Ω, 10Ω, 20Ω, 50Ω, 100Ω, 200Ω, 500Ω, 1kΩ, 2kΩ, 5kΩ, 10kΩ, 20kΩ, 50kΩ, 100kΩ			
Configuration	RDC	1Ω, 10Ω, 20Ω, 50Ω, 100Ω, 200Ω, 500Ω, 1kΩ, 2kΩ, 5k	kΩ, 10kΩ, 20kΩ, 50kΩ, 100kΩ		
T 10 1/14	`	Fast+: 1ms. Fast: 3.3ms. Middle: 90ms.			
Test Speed (Ma	s)	Slow: 220ms			
Highest Accura	асу	0.05% Please refer to the manuals for the details			
Measurement l	Display Range				
Cs, Cp		0.00001pF-9.99999F			
Ls, Lp		0.00001µH-99.9999kH			
D		0.00001-9.99999			
Q		0.00001-99999.9			
R, Rs, Rp, X, Z	Z, Rdc	0.001mΩ-99.9999MΩ			
G, B, Y		0.00001µs-99.9999S			
Vdc		±0V-±999.999V			
Idc		±0A-±999.999A			
Θr		-6.28318			
⊝d		-179.999° -179.999°			
Δ%		± (0.000%-999.9%)			
Turns Ratio		1: 0.001—1000: 1			
Transformer Te	est				
Test Paramete	r	Cs/Cp, Ls/Lp, DCR, Zx, Rs/Rp, D, Q, dZ, Lk, Phase, Balance Turns-Ratio, Ns: Np=U2/U1, Np: Ns=U1/U2 Turns: Ns=Np×U2/U1, Np=Ns×U1/U2			
	Continuous	In the single trigger mode, manually trigger once, and once test all the test parameters.			
Test Mode	Step	In the single trigger mode, manually trigger once to measure one parameter. Trigger again to measure the next parameter.			
	Fast+	Fast: 0.56ms(>10kHz)			
Test Speed	Fast	Fast: 3.3ms			
(Ms)	Middle	Middle: 90ms			
	Slow	Slow: 220ms			
Bias Resource		See *			
Average Times	3	Each test parameter can set different average times, the average times is 0-255			
Time Delay		Each test parameter can set a different delay time			
Transformer So	canning				
Built In Scanning Board		No	One Board as standard. Could extend to six boards. ((24×2) PIN per board)		
Transformer Handler	Pin Definition	NS1-NS30, GOOD, NG, TEST, TRIGGER, RESET	NS1-NS9, GOOD, NG, TEST, TRIGGER, RESET		
i iaiiulei	Output Characteristics	Optocoupler isolation, ULN2003 drive enhancement,	collector output		
Model		Direct reading, percentage			

I. TH2840X Series Automatic Transformer Test System

Test Range		Auto, Hold			
Bias Resource		See *			
External Scan	ning Box	compatible to TH1901 series, TH1831 scanning box, TH1806 series			
Number Of	Primary	60			
Windings	Secondary	9			
Average Time	S	Each test parameter can set different average times, t	he average times is 0-255		
Time Delay		Each test parameter can set a different delay time			
	Fast	Fast: 3.3ms(>=1kHz). Fast+: 1ms(>=10kHz) (Exclude	the time for the relay action)		
Test Speed (Ms)	Middle	Middle: 90ms			
(IVIS)	Slow	Slow: 220ms			
Test Lead Inte	erface	25*2pin FRC socket			
Other Function	ns and Specifications				
Storago	Internal	About 100M non-volatile memory test setting file			
Storage	U Disk	Test setting file, screenshot graph, record file			
Keyboard Loc	k	The front panel keys can be locked			
	USB HOST	2 USB HOST ports. Mouse and keyboard could work at the same time. Only one U disk can be used at the same time.			
	USB DEVICE	Universal serial bus socket, small type B (4 contact pous USB488 and USB2.0, the female connector is used to			
Interface	LAN	10/100M Ethernet adaptive, 8 Pin			
IIILEITACE	HANDLER	Used for Bin signal output			
	External DC BIAS Control	Support TH1778A (do not support transformer scanning)			
	RS232C	Standard 9-pin, cross			
	RS485	Can accept modification or connect to RS232 to RS48	35 adaptor		
Power-On Wa	rm-Up Time	60 Minutes			
Output Voltage	е	100-120VAC/198-242VAC Optional, 47-63Hz			
Power Consu	mption	More than 130VA			
Size (WxHxD)) Mm	430mm(W)x177mm(H)x265mm(D)	430mm(W)x177mm(H)x405mm(D)		
Weight (Kg) 11kg 17kg			471		

Standard Accessories

Three core power cord TH26011BS four-terminal Kelvin test cable TH1806B manual transformer scanning test fixture (TH2840AX/BX only)

TH260158A test cable(TH2840AX/BX only)
TH1801-001 Foot Start Switch (TH2840AX/BX only)
TH2829AX-001 Foot Start Switch (TH2840NX only)

I. TH2829X Series Automatic Transformer Test System

Features

- 7-inch TFT LCD display with a resolution of 800×RGB×480
- Frequency up to 1MHz, resolution: 0.5mHz
- Signal level: 5mV-2Vrms, optional (2Vrms-10Vrms)
- Built-in 0-100mA/0-10V bias power supply, optional 1A/2A bias current source
- Up to 75 times / sec test speed
- Diode forward and reverse characteristic detection
- Improved high turns ratio and weakly coupled transformer test capability
- Improved DCR testing capabilities
- Single screen can accommodate all scan test results
- Time stamping system: memory file setting, calibration deviation and deduction time
- Sort the selected scanning parameters
- Self-test scanning fixture relays
- Flexible deviation deduction method
- Multiple handling ways for FAIL cases
- Single parameter test cycle to test independent windings
- Increased security: administrator and operator passwords
- Built-in statistical analysis capabilities: Cpk, Cp, Ck, etc.
- Bar-code reading function can be used to select a setting file or to manage the type of test products
- Optional PC-level instrument test setup file programming capability
- Online upgrade mode: USBHOST or RS232
- Support multiple instrument networking through LAN interface
- Backward compatible with TH2818X/TH2819X parameter setting file
- Storage: Internal: 100 groups of settings file to save

U disk: 500 groups of configuration files, CSV format test data, GIF format images

RS232	LAN	SCANNER	USB HOST	USB DEVICE
standard	standard	standard	standard	standard
GPIB	RS485	HANDER		
option	option	option		

TH2829X Series

Dimension(mm): 400mm(W)x132mm(H)x385mm(D)

Weight: 13kg

Applications

- Switching transformer scanning test, comprehensive characteristics analysis.
- Network transformer scanning test, comprehensive characteristics analysis
- Discrete passive components (L, R, C) multi-channel scanning test
- Relay drive line package, contact resistance multi-channel scanning test
- Multi-channel DC resistance DCR scanning test
- Comprehensive test analysis of multiple passive components in impedance network

Specifications

Model	TH2829AX TH2829CX	TH2829CX					
Test Pin(PIN)	20 20	20					
Test frequency	20Hz — 200kHz 20Hz — 1	MHz					
Display	800×RGB×480 7 inch TFT LCD display						
LCR Function	option						
Transformer test parameters	Turn Ratio Turns Phase L C Lk Q ACR DCI	R Balance	Pin Short	Diode P/N			
LCR test parameters	Z , Y , C, L, X, B, R, G, D, Q, θ , DCR, Turn-Ratio, Phase, Lk						
Basic test accuracy	LCRZ 0.05%						
Basic lest accuracy	DCR, Turn Ratio 0.1%						
Signal source output impedance	10Ω, 30Ω, 50Ω, 100Ω						
Test speed (ms/times)	13ms, 90 ms, 370 ms						
AC signal level	$5 \text{mVrms} - 2 \text{Vrms} (\text{transformer test, can be customized to } 10 \text{Vrms}), 5 \text{m} 50 \mu \text{Arms} - 100 \text{mArms}$	Vrms — 10V	rms(LCR f	function);			
DC bias voltage source	0V — ± 10V; 0mA — ± 100mA						
DC bias current source	$0 - \pm 1$ A option(option TH2901) / $0 - \pm 2$ A option(option TH2902)						
DC constant current source	0mA - ±120mA for diode forward characteristic test						
Diode test	forward test voltage 0 — 9.9999 V						
Diode lest	Reverse test current 0 — 99.999 mA						
Comparator	10 bins, PASS/FAIL indication, file counting function						
Storage	Internal: 100 sets of configuration file; U disk: 500 sets of configuration files, CSV format test data, GIF format images						

Standard Accessories

Three core power cord
TH26016 Handler/Scanner standard 36P control cable
TH26011AS four-terminal Kelvin test cable (TH2829AX only)
TH26011BS four-terminal Kelvin test cable(TH2829CX only)

TH26004B two-terminal test cable
TH1901B manual transformer scanning test fixture
TH1801-001 Foot Start Switch

I. TH1778A Series DC Bias Current Source

Features

- Features
- Provide 0-20A constant current output
- Support the extension to the maximum 120A constant current output
- Master/slave control mode, flexible tailorability and scalability
- Fine current stepping
- 0Hz-2MHz frequency response
- Two current output modes: single current and step scan
- Graphical operation, Chinese and English interface
- Two SCPI command modes, strong adaptability
- 5 control modes
- Directly controlled by TH2829/TH2827/TH2830/TH2838 series

Applications

- Analysis of DC Characteristics of Inductors/Reactors
- Analysis of saturation characteristics of iron core/ferrite material
- Analysis of DC Characteristics of Other Materials

TH1778A

TH1778AS

TH1778A Series

Dimension(mm): 430mm(W)x177mm(H)x473mm(D) Weight: 18kg

Model	TH1778A TH1778B			TH1778B	TH1778AS	
Display	7 " 800*600 RGB TFT L	CD				
Operation	Entitative key + foot swite	ch			Controlled by the host	
Supporting test frequency	0Hz-2MHz					
Current Range	0-±20A			0-±20A (No Extension)	0-±20A, can extend to 120A	
	Range	0mA-1.000A	1.000A-5.000A		5.0A-120.0A	
	Step	5mA	25mA		100mA	
Current	Sweep adjustment time	4ms-3600s	10ms-3600s		20ms-3600s	
	Minimum interval of sweep adjustment step	5mA	25mA		100mA	
Range	1.000A/5.000A/20.0A				20.0A	
Maximum output voltage	10V					
Maximum permitted DCR	$R_{\text{max}}=V_{\text{max}}/I(\Omega)$ (Calculation	on of Rmax, ple	ase refer to the descrip	otion in user manual)		
Maximum permitted inductance value	L _{max} =V _{max} /(di/dt) (mH)(Ca	$L_{max}=V_{max}/(di/dt)$ (mH)(Calculation of Lmax, please refer to the description in user manual)				
Range mode	Auto					
Control mode for START/STOP	START/STOP entitative I	START/STOP entitative key, 4 foot switches, Bus				
Max. current time for continuous loading	Keeping 2-3h, continuous output					
Function	Fault self-inspection; 99 groups of custom profile management; dual-progress bar indication; Chinese and English; soft switching of slave machine; real-time operation; SCPI command set; simple dual-display computer.					
LCR Compatible	Controlled by TH2829/TH2827/TH2830/TH2838 Controlled by the host					
Interface	RS232, Slaver Link				Slaver Link	

I. TH510 Series Semiconductor C-V Characteristic Analyzer

Features

- 10.1-inch capacitive touch screen, resolution 1280*800, Linux system
- Dual CPU architecture , the fastest test speed of 0.56ms
- Three test methods: spot test, list scan, and graphic scan (option)
- Four parasitic parameters (Ciss, Coss, Crss, Rg) are measured and displayed on the same screen
- Integrated design: LCR + high voltage source + channel switching
- Standard 2-channel test, which can test two devices or dual-chip devices at the same time, the channel is the most Up to 6 channels can be expanded, channel parameters are stored separately

(TH513 Only 1-channel test)

- Fast charging, shortens capacitor charging time and enables fast testing
- Fast turn-on test Conduction
- Automatic delay setting
- High Bias: VGS: 0 ±40V, VDS: 0 200V/1500V/3000V
- 10 bin sorting

Applications

■ Semiconductor components/Power components

Parasitic capacitance test and C-V characteristic analysis of diodes, triodes, MOSFETs, IGBTs, thyristors, integrated circuits, optoelectronic chips, etc.

NEW

TH510 Series

Dimension: 430(W)x177(H)x265(D)

Weight : about 16kg

■ Semiconductor material

Wafer dicing, C-V characteristic analysis

■ Liquid crystal material

Elastic constant analysis

Model		TH511		TH512	TH513		
Channel		2 (2/4 Ch Optional) 1					
	Display	10.1-inch capacitive touchscreen					
Display	Ratio	16:9	16:9				
	Resolution	1280×RGB×800					
Test Paramete	er	$C_{\text{ISS}},C_{\text{OSS}},C_{\text{RSS}},R_{g}.$ Four paramete	er selec	table arbitrarily			
	Range	10kHz-2MHz					
	Accuracy	0.01%					
Test		10mHz	1.0000	0kHz-9.99999kHz			
Frequency	Resolution	100mHz	10.000	0kHz-99.9999kHz			
		1Hz	100.000kHz-999.999kHz				
		10Hz	10Hz 1.00000MHz-2.00000MHz				
	Voltage Range	5mVrms-2Vrms					
	Accuracy	± (10% x Setting Value+2mV)	± (10% x Setting Value+2mV)				
Test Level	Resolution	1mVrms 5mVrms-1Vrms					
	Resolution	10mVrms	1Vrms-2Vrms				
	Range	0 - ±40V					
	Accuracy	1% x Setting Voltage+8mV					
V_{GS}	Resolution	1mV	0V - ±10V				
	Resolution	10mV	±10V -	±40V			
	Range	0 - ±200V		0 - ±1500V	0 - ±3000V		
V_{DS}	Accuracy	1%×Setting Voltage + 100mV					
Output Impeda	ance	100Ω, ±2%@1kHz					
Computation		Absolute deviation ∆ from nominal v	Absolute deviation Δ from nominal value, percent deviation from nominal value $\Delta\%$				
Calibration Fu	nction	OPEN, SHORT, LOAD					

I. TH510 Series Semiconductor C-V Characteristic Analyzer

Measure Average			1-255 times		
AD Conversion Time (ms/time)		e)	Fast+: 2.5ms (> 5kHz), Fast: 11ms, Middle: 90ms, Slow: 220ms.		
Basic Accuracy			0.1%		
C _{ISS} , C _{OSS} , C _{RS}	SS S		0.00001pF - 9.99999F		
Rg			0.001m $Ω - 99.999$ 9M $Ω$		
Δ%			± (0.000% - 999.9%)		
	Spots		20 spots, the average number can be set for each spot, and each spot can be sorted separately		
Multi-Function	Parameter		Test Frequency, Vg, Vd, Channel		
Parameter List Scan	Trigger Mod	e	Sequence SEQ: After one trigger, measure at all sweep points, /EOM/INDEX output only once.		
	Trigger Wood		Step: perform a sweep point measurement per trigger, each point outputs /EOM/INDEX, but the list scan comparator result is only output at the last /EOM		
	Scanning S _I	pots	Any Spot is optional, up to 1001 Spots		
	Result Displ	ay	Multiple curves with the same parameter and different Vg; multiple curves with the same Vg and different parameters.		
	Display Ran	ige	Real-time automatic, locked		
Graphic Scan	Coordinate	ruler	Logarithmic, linear		
Grapino Goan	Parameter		Vg、Vd		
	Trigger Mode	Single	Manual trigger once, complete one scan from the start spot to the end spot, and start a new scan with the next trigger signal		
	Wiodo	Continuous	Infinite loop scan from the start spot to the end spot		
	Result Stora	age	Graphics, files		
	Bin		10Bin、PASS、FAIL		
	Bin Deviatio	n Setting	Deviation, Percent Deviation, Off		
	Bin Mode		Tolerance, continuous		
Comparators	Bin Count		0-99999		
Comparatore	Bin Judgem	ent	A maximum of four parameter limit ranges can be set for each bin. The corresponding bin number will be displayed within the setting range of the four test parameter results. If it exceeds the set maximum bin number range, FAIL will be displayed. Test parameters without upper and lower limits will be automatically ignored.		
	PASS/FAIL	indication	Satisfy Bin1-10, the PASS light on the front panel is on, otherwise the FAIL light is on.		
Data Storage			201 measurement results can be read in batches		
Ctanana Fila	Internal		About 100M non-volatile memory test setup file		
Storage File	External US	В	Test setup files, screenshots, log files		
Keyboard Lock			Lockable front panel buttons, other functions to be expanded		
	USB HOST		2 USB HOST interfaces, which can be connected to the mouse and keyboard at the same time, and only one U disk can be used at the same time		
	USB DEVIC	E	Universal Serial Bus socket, small type B (4 contact positions); compliant with USB TMC-USB488 and USB2.0, female connector for connecting external controllers.		
Interface	LAN		10/100M Ethernet, 8 pins, two speed options		
HANDLER			Used for Bin signal output		
	RS232C		Standard 9-pin, crossed		
	RS485		Can receive modification or external RS232 to RS485 module		
Boot Warm-up	Time		60 Minutes		
Power consump	otion		100-120VAC/198-242VAC Option, 47-63Hz		
Power consump	otion		More than 130VA		
Dimensions (W	/xHxD)mm		430x177x405		
Weight			16kg		

PIV test system for power semiconductor devices

I. TH500 Series PIV test system for power semiconductor devices

Features

Provide fixed static bias point for narrow pulse dynamic IV measurement.

satisfying quasi-isothermal test conditions.

- Realize quantitative measurement and data calculation of device parasitic effects.
- Minimum pulse width as low as 200ns
- Has internal and external synchronization capabilities.
- Pulse timing setting and time domain waveform recording.
- Instruments can be connected with socket & semi-automatic probe station for packaging and wafer-level chip testing.

Applications

■ This equipment is mainly used for static characteristics and reliability testing of high-voltage power devices. Under a certain bias, a high-voltage pulse signal (Pulse-IV) is provided to the device under test, and then the fast switching process of the device is simulated to test the performance change of the device during operation.

TH500 Series

Dimension A: 220mm(W)x86mm(H)x378mm(D) Dimension B: 144mm(W)x62mm(H)x191mm(D) Dimension C: 144mm(W)x62mm(H)x191mm(D)

Weight A: 3kg Weight B: 1kg Weight C: 1kg

Specifications

1. Gate probe parameters

a) Working Parameter

Working condition	TH500C		
Parameter	Condition	MIN	MAX
Programmable voltage range	static, pulse	-25V	+25V
Pulse amplitude	Programmable maximum and minimum difference		30V
Pulse current	Output or input maximum effective value	-1A	+1A
DC/RMS current		-300mA	+300mA
Pulse power	Output or input		10W
DC Power	Output		3W
DC Power	Input		0.5W
Output DC	1A、10mA Range	14.5Ω±2%	
Impedance	100uA Range	210Ω±2%	
Output capacitance		20pF	
Probe to ground impedance	Max 1W	100Ω	

c) Output voltage parameter

Working condition	TH500C	
Parameter	Condition	typical value
Programmable resolution	16位	0.8mV
Absolute accuracy	No load, one year	10mV+0.1%
Noise	00.1Hz-10kHz, no load, peak noise	0.6mV
Noise	0.1Hz-5MHz, no load, peak noise	3mV
Pulse edge	Speed=FAST	70mV
voltage	Speed=MEDIUM	30mV
tolerance	Speed=SLOW	15mV

b) Pulse parameter

Working con	Working condition		;
Parameter	Condition	MIN	MAX
Duty cycle	Any level under power- limited conditions	0%	100%
Frequency	Maximum Switching Voltage		500kHz
Pulse Width	Minimum pulse width when speed = FAST	200ns	
Rise Time	Speed = FAST, no load, 10% to 90%	33ns(t	ypical value)
Fall time	Speed = FAST, no load, 90% to 10%	32ns (t	ypical value)

d) Measurement parameter

Working o	condition	TH500C					
Parameter	Condition	Voltage range	Voltage range Current range				
Parameter	Condition	25V	1A	10mA	100μΑ		
ADC Resolution	16 Digit	880uV	35µA	0.35μΑ	4.8nA		
Setting	to 99.9%	250ns	300ns	350ns	4μs/400μs		
time	to 99.99%	400ns	550ns	700ns	-		
Recovery delay				0.6μs	1μs		
Bandwidth	-3dB	14MHz	14MHz	6MHz	1.3MHz		
Absolute Accuracy	Offset+gain	2.5mV+0.07%	200µA+0.07%	15µA+0.08%	0.6μA+0.1%		
Noise	Single sampling	±3.5mV	±140μ A	±10μ A	±1μ A		
	128 average	±0.3mV	±14µA	±1µA	±0.1µA		

PIV test system for power semiconductor devices

I. TH500 Series PIV test system for power semiconductor devices

2. Drain Probe Specifications

a) Working Parameter

Working condition		TH500B	
Parameter	Condition	MIN	MAX
Programmable voltage range	static, pulse	0V	+250V
Pulse current	Probe working range		+33A
Pulse storage capacitor		1000uF	
DC/RMS current	Probe working range		+5A
Pulse power	Probe working range		3000W
DC Power	Probe working range		100W
	00.3A Range&Current< 0.7A	2 Ω	
Output Impedance	30A, 3A, 0.3A Range & Current> 0.7A	0.4Ω	
Probe to ground impedance	Max 1W	100Ω	
Remote measurement work area	Maximum DC drop of power cord	-0.8V	+0.8V

c) Output voltage parameter

Working condition	Working condition		
Parameter	Condition MIN		MAX
Programmable resolution	18 Digit DAC	1mV	
	Positive 10V step	3ms to 3	80ms
Small step settling time	Negative 10V step (low voltage drop circuit prohibited)	3ms to 2	20ms
county unto	Negative 10V step (used in low voltage drop circuit)	50ms to 80ms	
	0 to 250V	325ms	
Full scale setting time	250V to 0V (low voltage drop circuit prohibited)	200ms	
	250V to 0V(low voltage drop circuit prohibited)	250ms	
Voltage drop of pulse output	Low voltage drop circuit prohibited, 10A current 50µs pulse width	-750mV	-700mV
puise output	Used in low voltage drop circuit, 10A current 50µs pulse width	-60mV	+10mV
Low voltage drop circuit use response time		1µs	

e) Internal protection circuit

Working condition		TH500C
Parameter	Condition	Value
Range Threshold		1A / 33A
Threshold resolution		14 bits, 2.3mA
Threshold Setting Accuracy	Bias + Current Accuracy	100mA + 0.5%

b) Pulse parameter

Working condition		TH500B	
Parameter	Condition	MIN	MAX
Duty cycle	Any value within the power range	0%	100%
	At 250V switch, selects fast speed		50kHz
Frequency	At 250V switch, selects slow speed		10kHz
	Absolute Value		500kHz
Pulse Width	Minimum pulse width when speed = FAST	200ns	
Rise Time	Speed = FAST, no load, 10% to 90%	20ns (typical va	alue)
Fall time	Speed = FAST, no load, 90% to 10%	22ns (typical va	alue)

d) Measurement parameter

Working condition		TH500B					
Daramatar	Condition	Voltage range		Current range			
raiailletei	Condition	250V	5V	30A	3A	300mA	
ADC Resolution	16 bits	4.7mV	90µV	590µA	58µA	5.5µA	
Setting	to 99.9%	200ns	300ns	250ns	350ns	250ns	
time	to 99.99%	300ns	500ns	500ns	600ns	700ns	
Recovery delay			0.5µs		0.5µs	0.5µs	
Bandwidth	-3dB	14MHz	7MHz /4MHz	10MHz	7MHz	10MHz	
Absolute Accuracy	offset + gain	20mV +0.1%	0.7mV +0.1%	5mA +0.3%	2.5mA +0.2%	0.1mA +0.1%	

Micro Signal Type Tester

II. TH199X Series precision source/measure unit

Features

- 7-inch capacitive touch screen, resolution 800×480
- Linux operating system
- Four-quadrant precision power output and measurement
- Single/dual channel output and measurement
- Up to ±210V DC voltage, ±3A DC current/±10.5A pulse
- 10fA/100nV minimum measurement resolution (6 1/2 digits)
- 10fA/100nV minimum supply resolution (6 1/2 digits)
- Up to 1,000,000 dots/sec sampling rate
- Arbitrary waveform generation
- List scan function (minimum 1µs interval)
- Direct generation of I/V curves of diodes, triodes, MOS tubes and IGBTs
- Standard PC software, convenient for computer control and data collection

Applications

 Semiconductor, discrete and passive component testing Diodes, Laser Diodes, LEDs Photodetectors, Sensors Field effect transistor, triode ICs (ICs, RFICs, MMICs)
 Resistors, theostats, thermistors, switches

 Precision electronics and green energy device testing PV Power semiconductor Battery Car Medical instrument Power and DC Bias Sources for Board Level Testing

TH199X Series

Shelf volume (mm): 125x132x480 Outline volume (mm): 236x154x526

Net weight: about 6kg (single channel) / 7.5kg (dual channel)

Research and Education
 New material research
 Nanodevice properties
 Giant magnetoresistance
 Organic equipment
 Any precision I/V source or measure

Model T		TH1991C	TH1991B	TH1991A	TH1991	TH1992B	TH1992A	TH1992	
Display									
Display			7-inch cap	acitive touc	h screen, re	esolution 80	0×480		
Key Parame	eters								
Channel			1	1	1	1	2	2	2
	Voltage		\pm 63V	±210V	±210V	±210V	±210V	±210V	±210V
Max Output	Comment	DC	±1.515A	±3.03A	\pm 3.03A	±3.03A	±3.03A	±3.03A	±3.03A
o aspat	Current	Impulse			±10.5A	±10.5A		±10.5A	±10.5A
	Max Digits	Digits	5 1/2	5 1/2	5 1/2	6 1/2	5 1/2	5 1/2	6 1/2
Power Source	Min Danalatian	Voltage	1µV	1µV	1µV	100nV	1µV	1µV	100nV
Course	Min Resolution	Current	1pA	100fA	1pA	10fA	100fA	1pA	10fA
	Max Digits	Digits	6 1/2	6 1/2	6 1/2	6 1/2	6 1/2	6 1/2	6 1/2
Measurement		Voltage	100nV	100nV	100nV	100nV	100nV	100nV	100nV
	Min Resolution	Current	100fA	10fA	100fA	10fA	100fA	100fA	10fA
Voltage Rar	nge		200mV- 60V	200mV- 200V	200mV- 200V	200mV- 200V	200mV- 200V	200mV-200V	200mV- 200V
Min Time In	terval		50µs	20µs	10µs	1µs	20µs	10µs	1µs

Micro Signal Type Tester II. TH199X Series precision source/measure unit

Voltage Sou	urce (Accura	ncy: Reading % + Bias, Noise: peak-	to-peak (0.1Hz-10Hz))
	,	Programming Resolution	100nV
	±200mV	Accuracy	±(0.015% + 225 μV)
		Programming Resolution	1 µ V
	±2V	Accuracy	±(0.02% + 350 μ V)
Range		Programming Resolution	10 µ V
	±20V	Accuracy	±(0.015% + 5mV)
		Programming Resolution	100 µ V
	±200V	Accuracy	±(0.015% + 50mV)
Voltage Me	saurement (Accuracy: Reding %+ Bias)	
		Measurement Resolution	100nV
	±200mV	Accuracy	±(0.015% + 225 μ V)
		Measurement Resolution	1 µ V
_	±2V	Accuracy	±(0.02% + 350 μ V)
Range		Measurement Resolution	10 µ V
	±20V	Accuracy	±(0.015% + 5mV)
		Measurement Resolution	100 µ V
	±200V	Accuracy	±(0.015% + 50mV)
Current Sou	urce (Accura	icy: Reading % + Bias, Noise: peak-	to-peak (0.1Hz-10Hz))
		Programming Resolution	10fA
	±10nA	Accuracy	\pm (0.10% + 50pA)
	400 A	Programming Resolution	100fA
	±100nA	Accuracy	±(0.06% + 100pA)
	L 4 A	Programming Resolution	1pA
	±1μ A	Accuracy	±(0.025% + 500pA)
	10 ·· A	Programming Resolution	10pA
	±10 µ A	Accuracy	±(0.025% + 1.5nA)
	1 100 ·· A	Programming Resolution	100pA
	±100 µ A	Accuracy	\pm (0.02% + 25nA)
	±1mA	Programming Resolution	1nA
Danas	± IIIIA	Accuracy	±(0.02% + 200nA)
Range	± 10m Λ	Programming Resolution	10nA
	±10mA	Accuracy	$\pm (0.02\% + 2.5 \mu\text{A})$
	±100m A	Programming Resolution	100nA
	±100mA	Accuracy	±(0.02% + 20 μ A)
	⊥ 1 Λ	Programming Resolution	1 μ Α
	±1A	Accuracy	\pm (0.03% + 1.5mA)
	⊥15 Λ	Programming Resolution	1 μ Α
	±1.5A	Accuracy	\pm (0.05% + 3.5mA)
	+21	Programming Resolution	10 µ A
	±3A	Accuracy	\pm (0.4% + 7mA)
	±10A	Programming Resolution	10 µ A
	(Impulse)	Accuracy	\pm (0.4% + 25mA)

	asurement			
		Measuremer	nt Resolution	10fA
	±10 nA	Accuracy		±(0.10 % + 50 pA)
		Measuremer	nt Resolution	100fA
	±100nA	Accuracy		±(0.06% + 100pA)
		Measuremer	nt Resolution	1pA
	±1μ A	Accuracy		$\pm (0.025\% + 500pA)$
		Measuremer	nt Resolution	10pA
	±10 μ A	Accuracy		±(0.025% + 1.5nA)
		Measuremer	nt Resolution	100pA
	±100 μ A	Accuracy		±(0.02% + 25nA)
		Measuremer	nt Resolution	1nA
	±1mA	Accuracy		±(0.02% + 200nA)
Range		Measuremer	nt Resolution	10nA
	±10mA	Accuracy		±(0.02% + 2.5 μ A)
		Measuremer	nt Resolution	100nA
	±100mA	Accuracy		±(0.02% + 20 μ A)
		Measuremer	nt Resolution	1 μ A
	±1A	Accuracy		±(0.03% + 1.5mA)
		Measuremer	nt Resolution	1 µ A
	±1.5A	Accuracy		$\pm (0.05\% + 3.5 \text{mA})$
	±3A Me	Measurement Resolution		10 µ A
		Accuracy		$\pm (0.4\% + 7 \text{mA})$
		Measuremer	nt Resolution	10 µ A
	±10A	Accuracy		±(0.4% + 25mA)
Pulse source	ce (pulse widt	h refers to th	e time from 10% rising e	edge to 90% falling edge, base level: pulse low level, peak level: pulse high level)
Minimum pı	rogrammable	pulse width		50 μs
Pulse width	programmin	g resolution		1μs
			Max Peak Current	0.105A
		210V	Max Base Current	0.105A
		2100	Impulse Width	50 μs - 99999.9s
			Max Duty Cycle	99.9999%
			Max Peak Current	1.515A
Max Voltage	e of DC or	21V	Max Base Current	1.515A
Impulse		210	Impulse Width	50 μs - 99999.9s
			Max Duty Cycle	99.9999%
			Max Peak Current	3.03A
		6V	Max Base Current	3.03A
		OV	Impulse Width	50 μs - 99999.9s
			Max Duty Cycle	99.9999%
			Max Peak Current	1.515A
		200V	Max Base Current	50mA
	20	2000	Impulse Width	50 μs - 2.5ms
			May Duty Cyala	2.5%
			Max Duty Cycle	2.070
			Max Peak Current	1.05A
Impulse On	alv.	180\/		
Impulse On	ıly	180V	Max Peak Current	1.05A
Impulse On	ıly	180V	Max Peak Current Max Base Current	1.05A 50mA
Impulse On	uly	180V	Max Peak Current Max Base Current Impulse Width	1.05A 50mA 50 µ s - 10ms
Impulse On	nly		Max Peak Current Max Base Current Impulse Width Max Duty Cycle	1.05A 50mA 50 µ s - 10ms 2.5%
Impulse On	ily	180V 6V	Max Peak Current Max Base Current Impulse Width Max Duty Cycle Max Peak Current	1.05A 50mA 50 µ s - 10ms 2.5% 10.5A

Resistanc	e Measurem	ent (Auto resistance measureme	nt mode, 4-wire, 2V range)
		Resolution	1 μ Ω
		Test Current	1 A
	2Ω	Current Range	1 A
		Total Tolerance	0.2% + 0.00035 Ω
		Resolution	10 μ Ω
		Test Current	100mA
	20 Ω	Current Range	100mA
		Total Tolerance	0.06% + 0.0035 Ω
		Resolution	100 μ Ω
		Test Current	10mA
	200 Ω		10mA
		Current Range	
		Total Tolerance	0.065% + 0.035 Ω
		Resolution	1mΩ
	2k Ω	Test Current	1mA
		Current Range	1mA
		Total Tolerance	0.06% + 0.35 Ω
		Resolution	10m Ω
Range	20k Ω	Test Current	100 μ A
3		Current Range	100 μ A
		Total Tolerance	0.065% + 3.5 Ω
		Resolution	100m Ω
	200k Ω	Test Current	10 µ A
	200K	Current Range	10 µ A
		Total Tolerance	0.06% + 35 Ω
		Resolution	1 Ω
	2M Ω	Test Current	1 µ A
	ZIVI 35	Current Range	1 µ A
		Total Tolerance	0.095% + 350 Ω
		Resolution	10 Ω
	20M Ω	Test Current	100nA
	ZUIVI 52	Current Range	100nA
		Total Tolerance	0.18% + 3.5k Ω
		Resolution	10 Ω
	000140	Test Current	10nA
	200M Ω	Current Range	10nA
		Total Tolerance	1.08% + 35k Ω
Interface			RS232C、USB HOST、USB DEVICE、LAN、HANDLER
Environme	ent and Tem	perature	
Operation	temperature	e and humidity range	23° C±5° C
		and humidity range	23° C±5° C
		temperature and humidity	23° C±5° C
Preheat time		•	60 Minutes
	Ambient temperature change		30% to 80%RH
Calibration cycle			One year
General F			
Power Su			90 V to 264 V, 47 Hz to 63 Hz, 250 VA maximum
Power	ריי)		31.8W
Shelf Size	<u> </u>		125mmx132mmx480mm
Dimension			236mmx154mmx526mm
Weight			About 6kg (Single Channel) / 7.5kg (Dual Channel)
vveigill			About ong (Single Chainlei) / 1.3ng (Dual Chaillel)

II. TH2690 Series fA meter/pA meter/Electrometer/High Resistance Meter

Features

- 5.0 inch capacitive touch screen
- 6½ Digit measurement resolution
- Four measurement modes: high resistance meter, voltmeter, ammeter, electrometer independent current and voltage measurement
- Built-in voltage source: ±1000V, resolution: 700 µ V
- Current range: 20pA-20mA, current resolution up to 0.1fA (10^{-16} A), the internal resistance voltage drop in the lowest current range <20 μ V
- The measurement resistance is as high as 10P Ω (10¹⁶ Ω), and the charge measurement is as low as 2nC. The input impedance is >200T Ω
- Support voltage measurement up to 20V, temperature and humidity measurement
- Time domain view, capture transient signal effects and select specified measurement data to support data recording
- With dedicated shielding test box
- Standard PC software, convenient for computer control and data collection

Application

material science

Biomaterials, ceramics, rubber, films, dielectric materials, electrochemical materials, ferroelectric materials, graphene, metals, organic materials, nanomaterials, polymers, semiconductors, etc.

■ Electronic Component

Types of transistors such as capacitors, resistors, diodes, sensors, TFT and CNT, photoelectric devices, solar cells, etc.

■ Electronic/non-electronic system

Ion beam, electron beam, sensor system, particle measurement, embedded precision instrument, etc.

Specifications

-				
Model	fA meter/ Electrometer/ High Resistance Meter pA meter/ Insulation Resistance Meter		fA meter	pA meter
	TH2690	TH2690A	TH2691	TH2691A
Measurement resolution	6½ Digit			
Current measurement	0.1fA - 20mA	1fA - 20mA	0.1fA - 20mA	1fA - 20mA
Minimum range	20pA	2nA	20pA	2nA
Resistance measurement	10ΡΩ	10T Ω		
Voltage measurement	1μV - 20V	1μV - 20V		
Input resistance	>200TΩ	>200TΩ		
Charge measurement	1fC - 2μC			
Temperature measurement	√	√		
Humidity measurement	√	√		
power source	±1000V	±1000V		
Minimum resolution	700μV	7 00μV		

Current measurement accuracy

Range	Display resolution	Accuracy ± (% + deviation)
20pA	1fA	1%+5fA
200pA	1fA	0.5%+5fA
2nA	1fA	0.2%+50fA
20nA	10fA	0.2%+3pA
200nA	100fA	0.2%+5pA
2μΑ	1pA	0.1%+50pA
20μΑ	10pA	0.05%+500pA
200μΑ	100pA	0.05%+5nA
2mA	1nA	0.05%+50nA
20mA	10nA	0.05%+500nA

Rack mount (mm):215(W) \times 88(H) \times 412(D) Dimension (mm):235(W) \times 111(H) \times 440(D)

Weight: 3.5kg

Resistance measurement accuracy

Range	Display resolution	Voltage Source	Current Range	Accuracy ± (% + deviation)
1ΜΩ	1Ω	20V	200 μ A	0.135%+1Ω
10M Ω	10Ω	20V	20μΑ	0.135%+10Ω
100M Ω	100Ω	20V	2μΑ	0.185%+100Ω
1G Ω	1kΩ	20V	200nA	0.285%+1kΩ
10G Ω	10k Ω	20V	20nA	0.285%+10kΩ
100G Ω	100k Ω	20V	2nA	0.41%+100kΩ
1ΤΩ	1ΜΩ	200V	2nA	0.45%+1MΩ
10T Ω	10M Ω	200V	200pA	0.625%+10MΩ
100T Ω	100M Ω	200V	20pA	0.75%+100MΩ

Voltage measurement accuracy

Range	Display resolution	Accuracy ± (% + deviation)
2V	1μV	0.05%+40μV
20V	10μV	0.05%+400μV

Charge measurement accuracy

Range	Display resolution	Accuracy ± (% + deviation)
2nC	1fC	0.5%+50fC
20nC	10fC	0.5%+500fC
200nC	100fC	0.5%+5pC
2μC	1pC	0.5%+50pC

Voltage source accuracy

Range	Display resolution	Accuracy ± (% + deviation)	Output Current
20V	700μV	0.05%+2mV	±20mA
1000V	35mV	0.05%+100mV	±1mA

Standard Accessories

Three-core power cord

TH26058B Triax to Alligator Cable

TH26058C Plug

USB Cable

TH90003D High Voltage Test Cable (For TH2690/A only)
TH90003E High Voltage Test Cable (For TH2690/A only)

TH2690_THS Temperature and Humidity Sensor (For TH2690/A only)

II. TH2518 Series Resistance/ Temperature Scanner

Features

- 4.3 inch 24-color touch LCD screen with 480 × 272 resolution
- Chinese and English optional operation interface
- Up to 90-channel resistance/temperature scan tests
- Support 6 units for free insertion and removal, simultaneous measurement between test units
- Maximum test speed can reach 600 times / sec
- Maximum resistance accuracy: 0.05%, minimum resolution: 10uΩ
- Basic temperature accuracy: 0.2 °C
- The adopted test end of the scan test channel is programmable
- Compatible with scanning and stand-alone measurement modes
- Temperature measurement can support PT100, PT500 and analog voltage three temperature sampling methods
- Temperature compensation function (TC)
- One-click screen capture function
- Data logging function
- Automatic upgrade of instrument operating software via USB HOST
- Comparison sort results of channel, board and machine-level can be output
- Handler interface for online operations

Dimension(mm):280(W)×88(H)×440(D) We

Weight:7.5kg

Application

Components

Resistor, inductor, transformer, motor, relay, circuit solder joint, capacitor riveting point

Cables, connectors

Strand wire, connectors, switches

Material

Heat-sensitive materials (fuses, sensor for thermistors), conductive materials such as metal foil

New energy

Electric vehicle battery pack connecting bridge, battery connection resistor

Specifications

Model	TH2518	TH2518A		
Measuring parameters	DC resistance, temperature	DC resistance		
Resistance test range	10μΩ — 200kΩ			
Basic resistance test accuracy	0.05%			
Resistance range	Auto and manual (200m Ω , 2 Ω , 20 Ω , 200 Ω , 2k Ω , 201	$k\Omega$, 200 $k\Omega$)		
Temperature sensor type	PT500 platinum resistance, PT100 platinum resistance, analog voltage input Temperature test range			
Temperature test range	PT100,PT500:-10℃ — 99.9℃, Analog:0V — 2V			
Temperature test accuracy	PT100, PT500:0.3%*measured value $\pm 0.5^{\circ}\text{C}$, Analog: $\pm 1\%\text{Rd} \pm 3\text{mV}$			
Measurement mode	Stand-alone, scanning			
Scanning channels	15 channels/boards, and up to 6 boards and 90 cha scanning test, and it is synchronous test between th			
Test terminal selection of test channel	Arbitrary configuration between channels (programmable)			
Test current	≤100mA			
Measurement speed	ingle board: 100 times / sec, 40 times / sec, 2 times 6 boards: 600 times / sec, 240 times / sec, 12 times			
Temperature compensation	√			
Display results	Simultaneous display the test results of 16 channels	and support page turning		
Short-circuit clear correction	Support full-scale short-circuit clearing for all channe	els		
Comparators	Comparison boundaries are set separately for each	test channel		
Limit mode	ABSDev, ABS, %			
Trigger mode	Auto trigger, manual trigger, bus trigger, Handler trig	ger, foot switch trigger		
Test terminal	Four-terminal test			
Storage	30 sets of instrument parameters			

Standard Accessories

Three-core power line
TH26050S Four-terminal test cable

PT500 temperature sensor (only for TH2518) 40-core flat cable

II. TH2515 DC Resistance Meter

Features

Maximum accuracy: 0.01%Temperature accuracy: 0.1°C

Minimum resolution: 0.1uΩ (resistance)

■ Low-resistance test mode can effectively protect DUT

■ Multiple measurement combinations of R, LPR, T

■ 24 bits, 4.3-inch and 4-wire touch LCD screen

LCD resolution: 480×272

■ Temperature compensation(TC)

Temperature conversion(Δt)

■ Maximum sampling rate: 100samps/sec

Offset voltage compensation (OVC)

Customer self-correction(0 ADJ)

 Simultaneously output compare results of 10 bins (OVER, PASS and BEEP)

■ Statistics function: CpK, Cp

■ 30 groups of parameter files can be saved and loaded

Screen information can be stored on U-disk

 Data save function brings convenience for saving measurement result

Automatically update operation software through USB HOST

Operation languages: Chinese and English

Intelligent detection for test state error

■ Flexible and convenient file operation system

■ Handler interface realizes on-line operation.

Interfaces such as RS232, USB HOST, USB Device and LAN are available and GPIB is optional.

■ Compatible with LXI C standard Specifications

		USB DEVICE			GPIB
standard	standard	standard	standard	standard	option

TH2515

Rack mount $(mm):215(W)\times88(H)\times335(D)$ Dimension $(mm):235(W)\times105(H)\times360(D)$ Weight:3.6kg

Application

Components

Resistor, inductor, transformer, motor, relay, circuit solder joint, capacitor riveting point

Cables, connectors

Strand wire, connectors, switches

Material

Heat-sensitive materials (fuses, sensor for thermistors), conductive materials such as metal foil

New energy

Electric vehicle battery pack connecting bridge, battery connection resistor

Brief Introduction

■ On the basis of rich experience in impedance test and wide market research, now Tonghui launches a new touch screen meter---TH2515 DC Resistance meter. TH2515, with elegant appearance, easy operation and excellent performance, is comparable to the most advanced products in the market.

TH2515 adopts 32 bits CPU and high density SMD technology. 24 bits, 4.3-inch and touch LCD screen brings ease for your eyes and convenience to your operation. For the contact influence of the thermoelectricity on DUT, its elimination is achieved. The maximum 0.01% accuracy and minimum 0.1 $\mu\Omega$ resolution shore up its leading role in testing relay contact resistance, interconnecting resistance, conductor resistance, PCB resistance and welding-hole resistance. Temperature compensation and conversion functions make your tests be free from the effect of the environment temperature. The offset voltage compensation has effectively eliminated the electromotive force of the DUT and its contact potential difference. Automation on production lines can be greatly improved by the realization of ultra-high test speed and the signal output of 10 compare results through HANDLER interface.

Providing 1 optional interface---GPIB and 4 standard ones---RS232C, USB HOST, USB Device and LAN, TH2515 is able to make data communication with PC and further realizes remote control.

Model	TH2515					
Display						
Display	24-bit, 400 X 272 and touch TFT LC	D screen				
Reading digits	5 ½ digits					
Resistance measurement						
Measurement range	0.1μΩ110ΜΩ					
Resistance range	Current	Resolution	*Accuracy±(ppm of Rd + ppm of Fs)			
20 mΩ	4.0	0.1μΩ	2500+10			
200m Ω	1A	1μΩ	2500+10			
200m Ω	100mA 1μΩ 3500+10					
2Ω	100mA 10 μ $Ω$ 350 +10					
Model	TH2515					

II. TH2515 DC Resistance Meter

20Ω		10mA	100μΩ	250+10		
200Ω		TomA	1m Ω	100+10		
2k Ω		1mA	10m Ω	100+10		
20k Ω		400.4	100m Ω	100+5		
100/200kΩ		100μΑ	1Ω	100+30		
1/2M Ω		10μΑ	10Ω	200+10		
10ΜΩ		1μΑ	100Ω	1000+60		
100ΜΩ		100nA	1kΩ	8000+600		
Measureme	nt function		'			
Resistance measureme	nt time	FAST: 7ms; MED: 22ms; SLOV Above data is correct when DIS		is ON, 20ms should be added.		
Temperature measureme		100 ± 10ms				
Test terminal 4-terminal						
Average set	tup	1-255				
Zero clearin	a	√				
Range switch		AUTO and Manual				
Trigger mod		Internal, Manual, External, BUS	 S			
Power freque selection		√ (avoid the interference of the				
Setting data storage	1	30 groups				
Low voltage measureme		Open voltage≤ 60mV Effective range: 2Ω, 20Ω, 200Ω) 2k∩			
Thermal	111	Encouve range. 232, 2032, 2003.	د, در ۱۸۵۷			
electromotive force elimina		\checkmark				
Statistics fur		AVG, MAX, MIN, OSD(Overall standard deviation), SSD(Sample standard deviation), Process capacity index (Cp, CpK)				
Measureme	nt error detection		√ (Detect the measurement cable has been connected correctly or not.)			
Multipole co	nnector	√ (Noise abatement function of high-resistance is optional)				
Beep state		Comparator, Bin compare, Butt	. ,			
Key lock		√				
Temperature	e measurement					
Temperature measureme		-10.0°C99.9°C Sensor: F	PT500			
Temperature measureme		Analog input: 0V2V				
Temperature compensation		(Convert the resistance measurement value to that one measured under preset temperature)				
Temperature	е	(Temperature rising is gained from resistance test values before and after warming)				
Compare Ju	ıdge					
	Signal output	HI/IN/LO				
Comparator	Веер	Beep mode: OFF, IN, HI/LO				
	Limit setup mode	Absolute value high/low limit, P	ercentage high/low limit +nom	inal value		
Sorting		10 bins, absolute value/ percentage				
External trig delay time	ger	AUTO: dependent on range, low voltage mode ON/OFF, OVC (offset voltage compensation) ON/OFF MANUAL: 0.0009.999s				
External input	t trigger	Rising/Falling edge				
Interface						
Interface		USB DEVICE, USB HOST, F	RS232C, HANDLER, GPIB ((OPTION)		
General spe	ecification					
Working cor	ndition	Temperature:0°C - 40°C, Hum	idity:≤ 80%RH			
Storage condition		Temperature:-10°C-50°C,Humid				
Accuracy gu	arantee condition	Temperature:18°C - 28°C, Hur	nidity:≤ 80%RH			
Power	Voltage	99V—242V				
I OWEI	Frequency	47.5Hz—63Hz				
Consumption		30 VA				
Dimension		215mm×87mm×335mm (net size) 235mm×105mm×360mm (with foam sheath)				
Dimension		Z15mm×8/mm×335mm (nets	5126/ 233111111^103111111^3	outiliti (willi loatii shealii)		

^{*:} the accuracy is guaranteed under certain environmental and test conditions:temperature of 18° C- 28° C, humidity is $\leq 80\%$ RH,test speed is SLOW2 and OVC function is ON(see details in Manual).

Standard Accessories

Three core power cord TH26050S Four-terminal test cable

PT500 temperature sensor

II. TH2516 DC Resistance Meter

Features

- Maximum resistance accuracy: 0.05%
- Temperature accuracy: 0.2°C
- Minimum resolution: 1uΩ
- Low-resistance test mode can effectively protect DUT
- Multiple measurement combinations of R, LPR, T
- 24 bits, 4.3-inch and 4-wire touch LCD screen
- LCD resolution: 480×272
- Temperature compensation(TC)
- Temperature conversion(Δt)
- Maximum sample rate: 50samps/sec
- Offset voltage compensation (OVC)
- Customer self-correction(0 ADJ)
- Simultaneously output compare results of 3 bins (OVER, PASS and BEEP)
- Statistics function: CpK, Cp
- 30 groups of parameter files can be saved and loaded
- Screen information can be stored on U-disk
- Data save function brings convenience for saving measurement result
- Automatically update operation software through USB HOST
- Operation languages: Chinese and English
- Flexible and convenient file operation system
- Handler interface realizes on-line operation
- Achieve data communication with PC and remote control through interfaces such as RS232, USB HOST, USB Device

TH2516 Series

Rack mount (mm):215(W) \times 88(H) \times 335(D) Dimension (mm):235(W) \times 105(H) \times 360(D) Weight:3.6kg

Application

Components

Resistor, inductor, transformer, motor, relay, circuit solder joint, capacitor riveting point

Cables, connectors

Strand wire, connectors, switches

Material

Heat-sensitive materials (fuses, sensor for thermistors), conductive materials such as metal foil

New energy

Electric vehicle battery pack connecting bridge, battery connection resistor

Brief Introduction

■ On the basis of rich experience in impedance test and wide market research, now Tonghui launches the new DC impedance measurement instrument with touch and LCD screen ---TH2516 DC Resistance meter. TH2516, with elegant appearance, easy operation and excellent performance, is comparable to the most advanced products in the market.

TH2516 adopts 32 bits CPU and high density SMD technology. 24 bits, 4.3-inch and touch LCD screen brings ease for your eyes and convenience to your operation. The maximum 0.05% accuracy and minimum 1 $\mu\Omega$ resolution shore up its leading role in testing relay contact resistance, interconnecting resistance, conductor resistance, PCB resistance and welding-hole resistance. Temperature compensation and conversion functions make your tests be free from the effect of the environment temperature. The offset voltage compensation has effectively eliminated the electromotive force of the DUT and its contact potential difference. For the contact influence of the thermoelectricity on DUT, its elimination is achieved. Automation on production lines can be greatly improved by the realization of ultra-high test speed and the signal output of 3 compare results through HANDLER interface.

Specifications

Model	TH2516			TH2516A		TH2516B			
Display	Display								
Display	24-bit, 48	4-bit, 480 X 272 and touch TFT LCD screen							
Reading digits	4½ digits								
Resistance measurer	ment								
Measurement range $1 μΩ -2 MΩ$ $10 μΩ -200 kΩ$ $1 μΩ -200 kΩ$						kΩ			
Resistance range	Current	Resolution	Accuracy Rd%+digits	Current	Resolution	*Accuracy Rd%+digits	Current	Resolution	*Accuracy Rd%+digits
20 m Ω	1A	1μΩ	0.100+3				1A	1μΩ	0.100+3
200m $Ω$	100mA	10 μΩ		100mA	10μΩ		100mA	10 μΩ	
2Ω	TOUTHA	100μΩ	ToomA	100μΩ		TOUTHA	100μΩ		
20Ω	10mA	1mΩ		10mA	1mΩ		10mA	1mΩ	0.1+2
200Ω	1mA	10m Ω	0.05+2	1mA	10m Ω	0.05+2	1mA	10m Ω	0.172
2k Ω	1004	100m Ω		1004	100m Ω		400 4	100m Ω	
20k Ω	ΙσομΑ	100μA 1Ω		100μΑ	1Ω		100μΑ	1Ω	
200k Ω	10μΑ	10Ω		10μΑ	10Ω				
2M Ω	1μΑ 100Ω 0.2+2								

((

II. TH2516 DC Resistance Meter

Measuren	nent functior	1											
Resistanc		FAST:10ms; MED:25ms; SLOW1:115ms;	SLOW2:455ms										
measuren	nent time		PFF; when DISPLAY is ON, 20ms should be added.										
Temperati measuren		100 ± 10ms											
Test termi	inal	4-terminal											
Average s	setup	1255											
Zero clear	ring	√											
Range sw		Auto, Manual											
Trigger mo		Internal, Manual, External, BUS											
Power free selection		√ (avoid the interface of the power noise)	(avoid the interface of the power noise)										
Setting da storage	ata	30 groups	<u> </u>										
Low voltag		Open voltage: ≤ 40mV Effective range: 2Ω, 20Ω, 200Ω, 2kΩ											
Thermal electromotive force elimination													
Statistics 1	function	AVG, MAX, MIN, OSD (Overall standard of	deviation), SSD (Sample standard deviation), Proce	ss capacity index (Cp, cpk)									
Beep state	е	Comparator, Button											
Key lock		√											
Temperatu	ure measure	ement											
Temperatu measuren		-10.0℃99.9℃ Sensor: PT500											
Temperatu measuren		Analog input: 0V2V Display: -99.9℃ 999.9℃											
Temperature compensation		√ (convert the resistance measurement value to that one measured under preset temperature)											
Temperatu	ure switch	√ (temperature rising is gained from resistance test values before and after warming)											
Compare	Judge	3,											
	Signal output	HI/IN/LO											
Comparator	Веер	Beep mode: OFF, IN, HI/LO											
Comparator	Limit setup mode	Absolute value high/low limit, Percentage	high/low limit +nominal value										
Sorting		3 bins, absolute value/percentage											
External to		Auto: dependent on range, low voltage me Manual: 0.0009.999s	ode ON/OFF, OVC (offset voltage compensation) O	N/OFF									
External ir trigger		Rising/Failing edge											
Interface													
Interface		USB DEVICE, USB HOST, RS232C, HAN	IDLER										
General s	pecification												
Working o	condition	Temperature:0°C - 40°C, Humidity:≤ 80	0%RH										
Storage condition Temperature:-10°C - 50°C, Humidity:≤ 90%RH													
Accuracy condition	guarantee	Temperature:18°C - 28°C, Humidity:≤	80%RH										
Power	Voltage	99V—121V,198V—242V											
I OWEI	Frequency	47.5Hz—63Hz											
Consumpt	tion	30 VA											
Dimension	n	215mm×89mm×360mm (net size) 235mm×104mm×360mm (with foam shea	ath)										
Weight		Approx.3.6kg											

^{*:} the accuracy is guaranteed under certain environmental and test conditions:temperature of 18℃-28℃,humidity is ≤ 80%RH,test speed is SLOW2 (see details in Manual).

Standard Accessories

Three core power cord

TH26050S Four-terminal test cable

PT500 temperature sensor (only for TH2516)

II. TH2684/TH2684A High Precision IR Tester

Features

- 320×240 dot-matrix LCD
- Powerful charging function
- High speed measurement:100meas/sec
- High measurement accuracy:±2% (< 1TΩ)
- Contact detection function for capacitive components
- Measurement range:TH2684 : 10kΩ to 50TΩ TH2684A: 10kΩ to 100TΩ
- Ultra-low leakage current test: minimum current is 10pA, accuracy: 2% ±2pA
- Measurement voltage:

TH2684: 10V – 500V, dual-output TH2684A:10V–1000V,single-output

- Dual outputs (precharge voltage output and test voltage output) can be set.
- The precharge voltage output can be set to follow the test voltage output and can be finely adjusted on test voltage. Also the precharge voltage can be set to work in independent mode.
- When the test current is less than 10nA, the internal input impedance can be selected between 10kΩ and 1MΩ to ensure rapid and accurate test.
- TH2684 charge current:2mA , 25mA, 200mA selectable TH2684A charge current:2mA , 25mA , 100mA selectable
- 7 current ranges, manual or auto range mode
- 4-bin comparison function
- Programmable sequence test mode
- R-T and I-T Curve test and display mode
- Auto store setup parameters
- Screen hardcopy to be saved as BMP file to a U disk
- Automatically upgrade firmware by a U disk
- Selectable Chinese and English operation interfaces
- Achieve automatic test system by Handler interface
- Achieve remote control by RS232C and USB Device interface
- Support scanning interface for mass tests

Application

- Ultra-High Value Resistors
- Insulation resistance and leakage current of capacitors
- Various dielectric insulating materials, equipment, wires and cables
- Insulation testing from safety regulations
- Work as high voltage DC power supply

TH2684/A

Dimension(mm):400(W) \times 130(H) \times 430(D) Weight:14kg / 10kg

Brief Introduction

■ TH2684/TH2684A High Precision IR Tester is an intelligent measurement instrument that is used for rapid measurements on IR properties of electronic parts and components, dielectric materials, equipments, cables, etc. Large LCD and user friendly menu provide you easier operation.

This instrument is especially designed for capacitor IR test TH2684/TH2684A can achieve rapid measurements through following methods:

- Selectable internal input impedance: If the current is greater than 10nA, only 10kΩ input impedance can be used; if the current is below 10nA, you can choose $10k\Omega$ or $1M\Omega$ impedance to test.
- ② With the built-in dual voltage output, TH2684 can charge large capacitors. By dual voltage output, TH2684 is able to output a precharge voltage up to 500V, 200mA. In voltage follow mode, precharge voltage follow with the test voltage output and can be finely adjusted. Above features ensure the perfect charge of capacitive materials.
- **3** TH2684A can output a voltage of 1000V, 100mA to fully charge the capacitive material.

In addition, user can program the sequence measurement steps (up to 18 steps) on TH2684/TH2684A. For instance, charge, wait, test, and discharge steps can be programmed. Each step can last up to 100s.

TH2684/TH2684A has a unique contact detection function. For capacitive material such as capacitors and cables, contact detection function can detect the contact of components under test. Moreover, this detection function will not increase any test time.

TH2684 equips with interfaces of RS232, USB DEVICE, SCANNING and Handler. Handler interface provide convenience for automatic test system; SCANNING interface is useful for mass measurement of components. User can use a scanner to speed measurement of components.

II. TH2684/TH2684A High Precision IR Tester

Specifications

Model	TH2684	TH2684A									
Resistance test											
Range	10 k Ω to 50T Ω	10 k Ω to 100T Ω									
Accuracy	Test current > 100pA: 2% Test current ≤ 100 pA: 2% ± Vtest/2pA										
Current test											
	Range 1 :100uA – 1mA; Internal Input in	Range 1 :100uA – 1mA; Internal Input impedance 10 $k\Omega$									
	Range 2 :10uA – 100uA; Internal Input impedance 10 kΩ										
	Range 3 :1uA – 10uA; Internal Input impedance 10 kΩ										
range	Range 4:100nA - 1uA; Internal Input in	mpedance 10 kΩ									
	Range 5 :10nA – 100nA; Internal Input in	mpedance 10 kΩ									
	Range 6:1nA - 10nA; Internal Input impedar	Range 6 :1nA – 10nA ; Internal Input impedance 10 k Ω or 1M Ω (selectable)									
	Range 7 :10pA – 1nA; Internal Input impedan	Range 7 :10pA – 1nA ; Internal Input impedance 10 k Ω or 1M Ω (selectable)									
Accuracy	2% ± 2pA										
Measurement voltage											
Range	10 to 500V,	10 to 1000V,									
	1V resolution	1V resolution									
Accuracy	2% of readout,or ± 1V										
Source resistance	200Ω										
Current limit	2,25,or 200mA	2, 25 , or 100mA									
Voltage Output		controlled by built-in timer, or by remote control.									
Timing	Programmable charge time: 0 to 1000s										
Measurement delay	0 to 1000s programmable										
Discharge resistance	2kΩ										
Discharge time	$t = 0.03 \text{ x Cx (in } \mu\text{F)}$, when Vtest falls to	1% of the test level.									
Measurement speed											
Trig mode	Single measurement: < 100ms(exclude ch Average up to 100 measurements:<100	- ,									
Continuous mode	Direct readout: 100ms – 10000ms depending on average number										
Comparator	4 bins:(3 bins for PASS,1 bin for FAIL)										
Range mode	Auto, Hold										
Average times	1 to100										
Memory	20 sets of setup values can be stored.										

General Specifications

Operating temperature and humidity	10°C - 40°C, ≤90%RH
Power supply	90 to 130 V AC(60Hz) or 198 to 260V AC(50HZ)
Power consumption	TH2684 : 250W TH2684A: 150W

Standard Accessories

TH26004B 2-terminal test clip leads

Options

TH26002 IR test fixture

II. TH2683A/B Insulation Resistance Meter

Features

■ Test voltage range: 1-1000V(TH2683A) 1-500V(TH2683B)

- Insulation resistance test range: 100KΩ-10TΩ
- Insulation resistance, leakage current dual display
- 24-bits, 4.3-inch and 4-wire touch LCD screen
- LCD resolution: 480*272Zero clearing function
- Contact detection function for capacitive components
- Fast test: 30ms
- Programmable sequence test mode
- 6 ranges, manual or auto range mode
- 4-bin comparison function: 3 bins for PASS, 1 bin for FAIL
- 20 setup files can be stored in the internal memory, support U-disk
- Measurement data can be stored on U-disk
- Automatically upgrade firmware by a disk
- Selectable Chinese and English operation interfaces
- Handler interface realizes on-line operation
- Achieve remote control by RS232C and USB Device interface
- Footswitch trigger function

TH2683A/B

Rack mount (mm):215(W) \times 88(H) \times 335(D) Dimension (mm):235(W) \times 105(H) \times 360(D) Weight:3.6kg

Application

- Ultra-High Value Resistors
- Insulation resistance and leakage current of capacitors
- Various dielectric insulating materials, equipment, wires and cables
- Insulation testing from safety regulations

Specifications

Model	TH2683A	TH2683B							
Resistance test									
Test range	100k Ω -10T Ω	100k Ω- 5 ΤΩ							
Test accuracy	l>10nA :±2% l≤10nA :±5%								
Current test									
	Range 1: 100uA - 1mA, internal input impe	dance 10kΩ							
	Range 2: 10uA - 100uA, internal input impedance 10kΩ								
Test range	Range 3: 1uA - 10uA, internal input impedance 10kΩ								
restrange	Range 4: 100nA - 1uA, internal input impedance $10k\Omega$								
	Range 5: 10nA - 100nA, internal input impedance 1M Ω								
	Range 6: 1nA - 10nA, internal input impeda	ance 1MΩ							
Test accuracy	2%±3pA								
Test voltage									
Range	1V-1000V	1V-500V							
Accuracy	Voltage≥10V: 1%±1V Voltage<10V: 10%±0.1V								
Current limit	10mA								
ON/OFF	Manually turn on or off it on front panel, or	controlled by built-in timer, or by remote control							
Charge time	0-999s programmable								
Measurement delay	0-999s programmable								
Measurement speed	Fast: single measurement time≤30ms; S	Slow: single measurement time≤60ms							
Comparator function	4 bins: 3 bins for PASS, 1 bin for FAIL								
Range mode	Auto, Hold								
Memory	Internal memory and external USB disk								

Standard Accessories

TH26004B 2-terminal test clip leads

II. TH1953/TH1963 Digit Multimeter

Features

- 4.3-inch LCD color display, Chinese and English menu
- 6 1/2 bit 1199999 digits reading (TH1963/TH1963A)
- 5 1/2 digit 119999 digits reading (TH1953)
- Test speed up to 1000 / s
- Small size, front and rear input terminal, easy to shelve (TH1963 only)
- Histogram, bar graph, trend chart display
- AC low frequency signal can be tested down to 3Hz
- Capacitance test function
- Up to 5V diode test voltage
- Stores data up to 10,000
- Fast Chinese and English help

Application

- Production line workbench
- Maintenance workbench
- Teaching laboratory
- Automated test equipment

TH1963

Rack mount (mm): 215(W) x 88(H) x 300(D) Dimension (mm): 235(W) x 105(H) x 320(D) Net weight: 2.7 kg

Specifications

Model	TH1963			TH1963A			TH195	TH1953		
Display	4.3-inch LCD color di	' '					440			
Display digits	1199999 digits readin	g					119999	digits reading		
Measurement parameters	DC voltage, AC voltag	ge, DC current, AC cu	ırrent, DC resista	nce, capac	itance, fre	quency, breakover, d	iode, temperature	1		
Display mode	Direct reading, histog	ram, bar graph, trend	l chart							
Measurement speed	Up to 1000 times / s									
Math function	Reset function, Min /	Max / Average / Stan	dard deviation, d	B, dBm						
Common features	Range	Trigger mode		Reading- hold						
	Auto / Manual	LOCAL: AUTO / SII REMOTE: IMMEDIA	ATE / BUS / EXT	Yes	HI, Lo an	d IN (PASS), with so	und beep			
Technical Index	Uncertainty: ± (% of r	eading +% of range),	T _{CAL} =25°C							
D	D / T D		Fraguanay	Highest	annual acc	curacy T _{CAL} ± 5°C		Highest temperature		
Parameters	Range / Test Range	Frequency	TH1963		TH1963A	TH1953	coefficient/°C			
DC voltage	100.0000 mV - 1000.0 100.000 mV - 1000.0			0.0035 +	-0.0005	0.0075 +0.0005	0.010+ 0.004	0.0005 + 0.0001		
			3 - 5Hz	1.00 + 0	.03	1.00 + 0.03	1.00 + 0.03	0.100 + 0.003		
			5 - 10Hz	0.35 + 0	.03	0.38 + 0.03	0.38 + 0.03	0.035 + 0.003		
True RMS AC voltage	100.000mV - 750.000	10Hz - 20kHz	0.06 + 0			0.09 + 0.03	0.005 + 0.003			
	100.0001117 - 750.000	7 V	20 - 50kHz	0.12 + 0	0.12 + 0.05		0.15 + 0.05	0.011 + 0.005		
			50 - 100kHz	0.60 + 0	.08	0.63 + 0.08	0.63+ 0.08	0.060 + 0.008		
			100 - 300kHz	4.00 + 0	.50	4.00 + 0.50	4.00 + 0.50	0.200 + 0.020		
DC Resistance	10Ω-100MΩ,Test curr	rent:10mA - 500nA		0.010 +	0.001	0.014 + 0.001	0.030 + 0.004	0.0006 + 0.0001		
	100μA - 10mA			0.050 +	0.006	0.050 + 0.005	0.050 + 0.008	0.0020 + 0.0005		
	100mA			0.050 +	0.004	0.050 + 0.004	0.050+0.004	0.0020 + 0.0005		
DC current	1A			0.100 +	0.004	0.100 + 0.004	0.100 + 0.004	0.0050 + 0.0010		
	3A			0.200 +	0.020	0.200 + 0.020	0.200 + 0.020	0.0050 + 0.0020		
	10A			0.120 +	+ 0.010 0.120 + 0.010		0.250 + 0.004	0.0050 + 0.0010		
	100µA - 100mA		3kHz - 5kHz	1.00 + 0	.04 0.10 + 0.04 0.		0.10 + 0.04	0.100 + 0.006		
	100μΑ - 100ΠΑ		5kHz - 10kHz	0.10 + 0	0.10 + 0.04		0.10 + 0.04	0.030 + 0.006		
	1A		3kHz - 5kHz	0.10 + 0	+ 0.04 0.10 + 0.04		0.10 + 0.04	0.015 + 0.006		
AC current	IA		5kHz - 10kHz	0.10 + 0	.04	0.10 + 0.04	0.10 + 0.04	0.030 + 0.006		
AO current	3A		3Hz - 5kHz	0.23 + 0	.04	0.23 + 0.04	0.23 + 0.04	0.100 + 0.006		
	JA		5kHz - 10kHz	0.23 + 0	.04	0.23 + 0.04	0.23 + 0.04	0.030 + 0.006		
	10A		3Hz - 5kHz	0.15 + 0		0.15 + 0.04	0.15 + 0.04	0.100 + 0.006		
	1071		5kHz - 10kHz	0.15 + 0	.04	0.15 + 0.04	0.15 + 0.04	0.030 + 0.006		
	3Hz - 10Hz			0.100		0.100	0.100	0.0002		
	10Hz - 100Hz			0.030		0.030	0.030	0.0002		
Frequency	100Hz - 1kHz			0.010		0.012	0.012	0.0002		
	100Hz - 300kHz			0.010		0.012	0.012	0.0002		
	Square wave			0.010		0.012	0.012	0.0002		
Diode	5V,Test current:1mA			0.010 +			0.1 + 0.02	0.0010 + 0.0020		
Breakover	1kΩ,Test current:1mA	1		0.010 +			0.1 + 0.02	0.0010 + 0.0020		
	1.0000nF			1.0 + 0.5				0.02		
Capacitance	10.000nF - 1.0000mF			0.5 + 0.1				0.02		
	10.000mF			1.0 + 0.5				0.02		
Temperature	PT100 (DIN/ IEC 751)		± 0.05°0						
. s. riporaturo	5 kΩ Thermistor			± 0.10°0)					

Standard Accessories

3 cord power line TH26017 USB Cable TH26036 1 pair of test lead (red and black)

II. TH2523 Battery Tester

Features

- Multiple test functions
- 4-terminal test, the test can't be influenced by impedance of test leads
- · Contact inspection, to inspect the contact of test leads in testing
- Deviation deduction (rel) and reference operation, eliminate the influence of base to test result.
- Feature of battery tester
 - · Basic impedance accuracy: 0.1%
- · Basic voltage accuracy: 0.1%
- Min. resolution of impedance:1uΩ
- Min. resolution of voltage:100uV
- Max. test speed 50 times/s
- 1kHz AC constant current source test
- R, V, L, Z, θ test
- 24 bit color 4.3 inch LCD display
- LCD resolution 480×272
- Direct and ∆% display
- V, I test signal level monitor function
- Graphic scanning and analysis
- 10 bin compare, High limit, low limit, pass and alarm function
- Statistics, like CpK, Cp.etc
- 100 groups of file for storage and load
- Information in screen stored in U disk.
- Automatic update through USB HOST
- Chinese-English operation system selectable
- Foot switch trigger function

		USB DEVICE		
standard	standard	standard	standard	option

TH2523/A

Rack mount (mm):215(W) \times 88(H) \times 335(D) Dimension (mm):235(W) \times 105(H) \times 360(D) Weight:3.6kg

Application

- Fast test for button battery and battery pack .etc.
- For cell phone, home appliances, electric vehicle and bike .etc.
- For high voltage battery test
- For early battery R&D test
- Contact resistance test
- Degradation and lifetime
- evaluation of battery
- UPS on-line test
- ESR test of super capactitor

Model		TH2523	TH2523A							
	Displayer	4.3 inch 480x272 24 bit colo	r TFT display							
Display	Displayed digit		R: slow 5 digits, Max. displayed digit 35000; fast, Max. displayed digit 3500 V: slow 5 digit, Max. displayed digit 35000; fast, Max. displayed digit 3500							
Parameter		R,V,R-V,Z-θ°,Z-θr, L-Q,L-R,R-X,R-Q								
Basic accuracy		R:0.1%, V:0.05%								
Test	Frequency	1kHz ±0.2Hz sine waveform								
signal source	Constance current	100mA/10mA/1mA/100uA/10	0uA							
	R/ Z/ X	1uΩ—3.5kΩ								
	DC V	100uV—65V	100uV—350V							
	L	0.2nH-1H								
Display range	Q	0.001—9999.9								
	θd(deg)	-179.99—179.99								
	θd(rad)	-3.1416—3.1416								
Mathematics		Direct, ΔABS, Δ%								
AC R		30mΩ/300mΩ/3Ω/30Ω/300Ω	2/3kΩ							
Range	DC V	6V/60V	30V/300V							
Max. input voltage		65V	350V							
Test speed(time/s)		FAST: 50 times/s; MED: 1 SLOW1: 5 times/s; SLOW	10 times/s '2: 3 times/s							
Comparator		10 bins								
Range mode		Auto, hold								
Trigger mode		Internal, manual, external, b	us							
Operation mode		setting; graphic analysis and	Test leads contact inspection; DUT I/V monitor; REL; short "0"; 1-255 average; delay setting; graphic analysis and scanning; USB storage; Max.100 groups of file save/load; Statistics of Max.30000 of data							
General specification										
Operating	Temperature	0°C -40°C								
environment	Humidity	≤90%RH								
Power	Voltage	100V-120V , 198V-242V								
supply	Frequency	47Hz - 63Hz								
Power consumption		Max.15AV								

III. TH6220 Series DC Power Supply

Features

- 4-digit voltage/current LED displ
- Voltage/current resolution up to 10mV/1mA
- Five programmable callback files
- Set data power-off save function
- Automatic switching between CC and CV modes
- Keyboard knobs for quick operation
- The status light indicates the key function setting status and CC/CV working status of the instrument
- Support over-current protection (OCP), over-voltage protection (OVP) and relay thermal protection functions

Application

- Generic testing for R&D and design verification
- Routine testing and maintenance of production line workbench
- Automated device integration testing
- Solar photovoltaic simulation test
- New energy vehicle simulation test
- Teaching laboratory

TH6220 Series

TH6222: Rack mount (mm): 162mm(W)*111mm(H)* 243mm(D)

Net weight: 4.7kg

TH6223: Rack mount (mm) : 162mm(W)*111mm(H)*275mm(D)

Net weight: 6.3kg

TH6223A: Rack mount (mm): 162mm(W)*111mm(H)* 275mm (D)

Net weight: 6.4kg

Specifications

Model	Model TH6222 TH6223 TH6223A							
	Voltage	0-30V	0-30V	0-60V				
Rated Output	Current	0-3A	0-6A	0-3A				
	Power	90W	180W	180W				
Lload Regulation	Voltage	≤0.01%+2mV	≤0.01%+3mV	≤0.01%+2mV				
± (% Output + Bias)	Current	≤0.02%+2mA	≤0.02%+3mA	≤0.02%+2mA				
Power regulation	Voltage	≤0.01%+2mV	≤0.01%+3mV	≤0.01%+3mV				
± (% Output + Bias)	Current	≤0.01%+2mA	≤0.01%+3mA	≤0.01%+2mA				
Programming	Voltage	10mV	10mV	10mV				
resolution	Current	1mA	1mA	1mA				
Read-back value	Voltage	10mV	10mV	10mV				
resolution	Current	1mA	1mA	1mA				
Programming	Voltage	≤0.2%+10mV	≤0.2%+10mV	≤0.2%+10mV				
Accuracy	Current	≤0.1%+5mA	≤0.1%+5mA	≤0.1%+5mA				
Read-back value	Voltage	≤0.2%+30mV	≤0.2%+30mV	≤0.2%+30mV				
Accuracy	Current	≤0.1%+5mA	≤0.1%+5mA	≤0.1%+5mA				
	Vp-p	≤10mV	≤15mV	≤15mV				
Dinale and Naise	Vrms	≤1mV	≤2mV	≤2mV				
Ripple and Noise	Ір-р	≤2mA	≤3mA	≤3mA				
	Irms	≤1mA	≤1mA	≤1mA				
Rise time (10% Load)	10%-90%	≤80ms	≤100ms	≤100ms				
Fall time (10% Load)	90%-10%	≤70ms	≤80ms	≤80ms				
Output Temperature Coeffic	ient (Voltage/Current)	≤75ppm	≤75ppm	≤75ppm				
Memory		5 Groups (M1-M5). Automatic m	emory when power off.					
Size(W×H×D)		162mm×111mm×243mm	162mm×111mm×275mm					
Weight		4.7kg	6.3kg	6.4kg				
	Normal Work	0°C - 40°C,humidity: < 90%RH						
Ambient temperature and humidity	Reference Work	20℃ ±8℃,humidity:<80%RH						
namaty	Transport Environment	0°C - 55°C,humidity: < 93%RH						
Working Dower	Voltage	220V ±10%						
Working Power	Frequency	50Hz ±5%						

Standard Accessories

Power cord YT3008 Test Cable

Optional

TH26035D high current test cable TH26035E High current test lead

III. TH6200 Series DC Power Supply

Features

- Fresh and simple system settings with Chinese and English operation interfaces
- High resolution: 24-bit color 4.3-inch TFTLCD, resolution: 480 x 272
- Linear design and double range output
- High precision and high stability, low ripple and low noise
- 1/2 2U super mini size and output and sampling terminal on the front and rear panel
- Powerful programming ability
 100 groups of setting state memory saving and calling10 trigger files, 100 test sequences per file, loop output of programming
- Timing output: time (0.1-99999.9s)
- Use rotary knob and numeric keyboard to set the voltage, current and output time
- Panel function button with backlight display
- Remote measurement function, compensation for line voltage drop

TI ICOO4

TUGOOO

- Output control switch
- Copy screen function
- Over voltage, over current protection
- Intelligent temperature control fan
- Support standard SCPI communication protocol
- Software monitoring via computer
 Upgrade instrument firmware via USB flash

TH6200 Series

Rack mount (mm): 215(W) x 88(H) x 396(D) Dimension (mm): 236(W) x 111(H) x426(D) Net weight: 8.1 kg

Application

R & D and design verification common test

TUGOTO

- Production line table routine testing and maintenance
- Automated device integration testing
- Solar photovoltaic simulation test
- New power car simulation test
- Teaching laboratory

TUGOOO

Specifications

Madal

Model			TH6201		TH6202		TH6203		TH6212		TH6213			
	Channel/F	Range	Range1	Range2	Range1	Range2	Range1	Range2	Range1	Range2	Range1	Range2		
Rated output	Voltage		0-20V	0-8V	0-32V	0-15V	0-72V	0-32V	0-32V	0-15V	0-72V	0-32V		
(0°C-40°C)	Current		0-5A	0-10A	0-3A	0-6A	0-1.5A	0-3A	0-6A	0-12A	0-3A	0-6A		
	Power		100W	80W	96W	90W	108W	96W	192W	180W	216W	192W		
Load regulation	Voltage		≤0.01% +	4mV	≤0.01% +	· 3mV	≤0.01% +	3mV	≤0.01% +	6mV	≤0.01% + 5mV			
± (% Output + Bias)	Current		≤0.01%	+ 2mA					≤0.01% +	5mA	≤0.01% + 4	1mA		
Power regulation	Voltage		≤0.01% +	4mV	≤0.01% +	· 3mV	≤0.01% +	3mV	≤0.01% +	6mV	≤0.01% + 5	ōmV		
± (% Output + Bias)	Current		≤0.01%	+ 2mA					≤0.01% +	5mA	≤0.01% + 4	₽mA		
Programming	Voltage		1mV											
resolution	Current		0.1mA											
Read-back value	Voltage		1mV											
resolution	Current		0.1mA											
Year accuracy (25°C±5°C) ± (% Reading +	D	Voltage	≤0.04% -	+ 8mV										
	Programming	Current	≤0.1% +	.1% + 5mA										
Eias)	Read-	Voltage	≤0.04%	+ 8mV										
	back	Current	≤0.1% +	5mA										
	Normal r		$\leq 3mVp-p/1mVrms$ $\leq 4mVp-p/1mVrms$ $\leq 3mVp-p/1mVrms$						≤4mVp-p/	1mVrms				
Ripple and Noise (20Hz-20MHz)	Normal mode current		<9mArms <7mArms			<6mArm	s	<10mArms <8mArms						
	Commor curre		<1.5µArr	ms										
Transient response		75mV wl	<50uS (the time required for the output returns within 75mV when the output current changes from full scale to half or from half to full scale)						<50uS (the time required for the output returns within 120mV when the output current changes from full scale to half or from half to full scale) <50uS (the time required for the output returns within 75mV when the output current changes from full scale to half or from half to full scale)					
Rise time (10% — 90	0%)		<90ms						<120ms		<180ms			
Fall time (90% — 10	%)		<150ms		<200ms		<250ms		<350ms		<250ms			
Series and parallel	Voltage													
set value accuracy	Current													
Timer			0.1 ~ 99	999.9 sed	conds									
Memory			10 groups of trigger output, 100 steps for each group,100 sets of setting memory											
Canadanal A.		•												

Standard Accessories

YT3007 Test Cable(only TH6203)

YT3008 Test Cable

III. TH6300 Series DC Power Supply

Features

- 480x272 pixels, 24-bit color, 4.3-inch color TFT LCD screen for setting test conditions and display of testing results, etc.
- Digital keyboard and knob operation, simple and fast
- High accuracy, high resolution, low ripple and low noise
- Support shutdown data saving and boot data loading
- Support voltage test function
- Support data saving and callback
- List setting and step output
- Intelligent fan control to save energy and reduce noise
- Software control and detection via computer
- Interface: RS232, USB, GPIB (optional)

Application

- R & D and design verification common test
- Production line table routine testing and maintenance
- Automated device integration testing
- Solar photovoltaic simulation test
- New power car simulation test
- Teaching laboratory

TH6300 Series

Rack mount (mm): 215(W) x 88(H) x 412(D) Dimension (mm): 235(W) x 111(H) x440(D) Net weight: 8.1kg

Specifications

- Poti														
Modle		TH6301	TH6302	TH6303	TH6304	TH6312	TH6313	TH6314	TH6323	TH6324				
D	Voltage	20V	30V	60V	120V	30V	60V	120V	60V	120V				
Rated output	Current	30A	20A	10A	5A	30A	15A	6A	25A	10A				
output	Power	200W	200W	200W	200W	360W	360W	360W	600W	600W				
Load	Voltage	0.01%+20mV	0.01%+20mV	≤0.01%+5mV	≤0.01%+5mV	0.01%+20mV	≤0.01%+8mV	≤0.01%+8mV	≤0.01%+15mV	0.01%+15mV				
regulation≤	Current	0.01%+20mA	0.01%+ 15mA	≤0.01%+4mA	≤0.01%+4mA	0.01%+20mA	≤0.01%+6mA	≤0.01%+6mA	≤0.01%+10mA	0.01%+10mA				
Power	Voltage	0.01%+20mV	0.01%+ 20mV	≤0.01%+5mV	≤0.01%+5mV	0.01%+20mV	≤0.01%+8mV	≤0.01%+8mV	≤0.01%+15mV	0.01%+15mV				
regulation≤	Current	0.01%+20mA	0.01%+ 15mA	≤0.01%+4mA	≤0.01%+4mA	0.01%+20mA	≤0.01%+6mA	≤0.01%+6mA	≤0.01%+10mA	0.01%+10mA				
Set value Voltage 1mV(< 100V), 10mV(> 100V)														
resolution	Current				0.1mA((< 10A), 1mA	A(> 10A)							
Read-back	Voltage	1mV(< 100V), 10mV(> 100V)												
resolution	Current	0.1mA(< 10A), 1mA(> 10A)												
Year set accuracy	Voltage	0.05%+10mV	0.05%+10mV	0.05%+10mV	0.05%+15mV	0.05%+10mV	0.05%+10mV	0.03%+15mV	0.05%+10mV	0.05%+15mV				
(25°C±5°C)≤	Current	0.1%+30mA	0.1%+20mA	0.1%+10mA	0.1%+20mA	0.1%+30mA	0.1%+15mA	0.1%+20mA	0.1%+25mA	0.1%+25mA				
Year read-	Voltage	0.05%+10mV	0.05%+10mV	0.05%+10mV	0.05%+15mV	0.05%+10mV	0.05%+10mV	0.03%+15mV	0.05%+10mV	0.05%+15mV				
back accuracy (25°C±5°C)≤	Current	0.1%+30mA	0.1%+20mA	0.1%+10mA	0.1%+20mA	0.1%+30mA	0.1%+15mA	0.1%+20mA	0.1%+25mA	0.1%+25mA				
Ripple and	Differential mode voltage	15mVpp	15mVpp	15mVp-p	20mVp-p	15mVpp	15mVp-p	20mVpp	20mVp-p	25mVp-p				
Noise (20Hz20MHz)≤	Differential mode current	10mArms	10mArms	8mArms	10mArms	12mArms	10mArms	12mArms	13mArms	15mArms				
Rise time≤	10%-90%	100ms	100ms	150ms	150ms	100ms	150ms	150ms	150ms	150ms				
Fall time≤	90%-10%	2s	2s	2s	3.5s	2s	2s	3.5s	2s	3.5s				
Memory		10 sets of trio	gger output, 1	00 steps per	group, 100 gr	oups of set r	memory							
Output		Support front	and rear pan	el output, the	maximum ou	utput current	of front termi	nal is 10A						

Standard Accessories

YT3008 Test Cable

III. TH6420 Series Multi-channel Programmable Linear DC Power Supply

Features

- Voltage/current resolution up to 1mV/1mA
- 5-digit voltage/4-digit current LED display (TH6423)
- Five groups of programmable callback files
- Callback file programmable list output function
- Output upper and lower limit setting and over limit alarm function
- Set data power-off save function
- Series and parallel function of channel 1 and channel 2
- Automatic switching between CC and CV modes
- Keyboard knob quick operation
- The status light indicates the key setting status of the instrument and the working status of CC/CV
- Fan automatic speed adjustment function

Application

- General testing for R&D and design verification
- Routine testing and maintenance of production line workbench
- Automated device integration testing
- Teaching laboratory

TH6420 Series

TH6422

Rack mount (mm) : 215(W)×133(H)×268(D)

Net weight: 4.7kg TH6423/TH6422A

Rack mount (mm) : 215(W)×133(H)×268(D)

Net weight: 6.3kg

Specifications

Model		TH6422A			TH6422			TH6423		CH3 CH				
	Channel	CH1	CH2	CH3	CH1	CH2	CH3	CH1	CH2	CH3	CH4			
Rated Output	Voltage	0-32V	0-32V	0-5V	0-32V	0-32V	0-5V	0-32V	0-32V	0-5V/0-10V	0-5\			
(0°C-40°C)	Current	0-3A	0-3A	0-3A	0-3A	0-3A	0-3A	0-3A	0-3A	0-3A/0-1A	0-1/			
	Power	96W	96W	15W	96W	96W	15W	96W	96W	15W/10W	5W			
Lload Regulation	Voltage	≤0.01%+3	mV								,			
± (% Output + Bias)	Current	≤0.2%+3n	nA											
Power regulation	Voltage	≤0.01%+3	mV											
± (% Output + Bias)	Current	≤0.2%+3n	nA											
Programming	Voltage	10mV			1mV									
resolution	Current	10mA		1mA										
Read-back value	Voltage	10mV			1mV									
resolution	Current	10mA			1mA									
Programming Accuracy	Voltage	±(0.1% of	reading + 30	0mV)	±(0.02%	of reading	+ 6mV)							
(25°C±5°C)	Current	±(0.5% of	reading + 30	0mA)	≤0.2% c	f reading +	6mA							
Read-back value	Voltage	±(0.1% of	reading + 30	0mV)	±(0.02%	of reading	+ 6mV)							
Accuracy (25°C±5°C)	Current	±(0.5% of	reading + 30	0mA)	≤0.2% c	≤0.2% of reading +6mA								
	Voltage(Vp-p)	≤3mVp-p			<u>'</u>									
Ripple and Noise (20Hz-20MHz)	Voltage (rms)	≤1mVrms			,									
(20HZ-20MHZ)	Current	≤3mArms												
Series Programming	Voltage	±(0.1% of	\pm (0.1% of reading + 30mV) \pm (0.03% of reading + 10mV)											
Accuracy	Current	±(0.5% of	reading + 30	0mA)	≤0.3% c	≤0.3% of reading +10mA								
Series Read-back	Voltage	±(0.1% of	reading + 30	0mV)	±(0.03%	±(0.03% of reading + 10mV)								
value Accuracy	Current	±(0.5% of	reading + 30	0mA)	≤0.3% c	≤0.3% of reading +10mA								
Parallel Programming	Voltage	±(0.1% of	reading + 30	0mV)	±(0.03%	of reading	+ 10mV))						
Accuracy	Current	±(0.5% of	reading + 30	0mA)	≤0.3% c	≤0.3% of reading +10mA								
Parallel Read-back	Voltage	±(0.1% of	reading + 30	0mV)	±(0.03%	of reading	+ 10mV))						
value Accuracy	Current	±(0.5% of	reading + 30	0mA)	≤0.3% c	≤0.3% of reading +10mA								
Memory	Call back Memory	5 Groups	and 1 goup	of autom	atic memory wh	en power o	off.							
	Function	List the ou	tput duration	n of each	shift									
Timer	Time setting	0.1s-9999	9s											
	Resolution	0.1s												
Working Dower	Voltage	220V(1±1	0%)											
Working Power	Frequency	50Hz (1±	5%)											
	Normal Work	0°C- 40°C	, humidity: <	< 90%RF	ı									
Ambient temperature	Reference Work	20°C±8°C	, humidity: <	< 80%RH	1									
and humidity	Transport Environment	0°C- 55°C	, humidity: <	93%RH	I									
	Warm up time	More than	20 Minutes											
Size and weight	Size (W×H×D) mm	215×133>	268											
oize and weight	Weight (kg)	4.7			4.7		6.	4						

Standard Accessories

III. TH6400 Series DC Power Supply

Features

- Fresh and simple system settings with Chinese and English operation interfaces
- High resolution: 24-bit color 4.3-inch TFTLCD, resolution: 480 x 272
- Linear design and triple channel output
- High precision and high stability, low ripple and low noise
- 1/2 2U super mini size and output and sampling terminal on the front and rear panel
- Programmable output of voltage and current
- Timing output: time (0.1-99999.9s)
- Three-channel independent adjustment
- Simultaneously display of voltage, current, power and timing output time for three-channel
- Support series, parallel or synchronous output between channels
- Use rotary knob and numeric keyboard to set the voltage, current and output time
- Remote measurement function, compensation for line voltage drop
- Output control switch
- Fully isolated circuit and support positive and negative reverse connection
- Copy screen function
- Over voltage protection
- Intelligent temperature control fan
- Support standard SCPI communication protocol
- Upgrade instrument firmware via USB flash
- Software monitoring via computer

(TH6402A only USB HOST)

TH6402

Rack mount (mm): 215(W) x 88(H) x 457(D) Dimension (mm): 235(W) x 105(H) x487(D)

Net weight: 13kg

Application

- R & D and design verification common test
- Production line table routine testing and maintenance
- Automated device integration testing
- Solar photovoltaic simulation test
- New power car simulation test
- Teaching laboratory

Specifications

Model			TH640	2A		TH6402			TH641	2		TH641	3		
	Channel/R	ange	Range1	Range2	Range3	Range1 Ra	ange2	Range3	Range1	Range2	Range3	Range1	Range2	Range3	
Rated output	Voltage		0-30V		0-5V	0-30V		0-6V	0-30V		0-6V	0-60V		0-6V	
(0°C-40°C)	Current		0-3A		0-3A	0-3A		0-5A	0-6A	0-6A 0-5A		0-3A		0-5A	
	Power		90W		15W	90W		30W	180W		30W	180W		30W	
Load regulation	Voltage		≤0.01%	% + 3 m	V	≤0.01% + 3 mV									
± (% Output + Bias)	Current		≤0.1%	+ 3 mA	١	≤0.01% +	+ 3 mA	4							
Power regulation	Voltage		≤0.01%	1% + 3 mV ≤0.01% + 3 mV											
± (% Output + Bias)	Current		≤0.1%	+ 3 mA	١	≤0.01% + 3 mA									
Programming	Voltage		10mV			1mV									
resolution	Current		1mA			0.1mA									
Read-back value	Voltage		10mV	10mV 1mV											
resolution	Current		1mA	1mA 0.1mA											
Year accuracy	Programming	Voltage	≤0.05%	≤0.05% + 20 mV ≤0.03% + 10 mV											
(25°C± 5°C)	Frogramming	Current	≤0.2%	+5mA		≤0.1%+5	+5mA ≤0.1%+8mA					≤0.1%+5mA		≤0.1%+8mA	
± (% Reading + Bias)	Read-	Voltage	≤0.05% + 20 mV			≤0.03% + 10 mV									
	back	Current	≤0.2%	+5mA		≤0.1%+5	imΑ	≤0.1%+8mA				≤0.1%+	-5mA	≤0.1%+8mA	
	Normal m		≤1mVrms/ 3mVp-p				≤1mVrms / 4mVp-p								
Ripple and Noise (20Hz-20MHz)	Normal m		≤3mAr	≤3mArms			≤5mArms					≤4mArı	ms	≤5mArms	
	Common currer														
Series and parallel set	Voltage		≤0.02% + 5 mV								≤0.02% + 10mV				
value accuracy	Current		≤0.1%	+ 20m/	4				≤0.1% + 30mA						
Timer	0.1 ~ 99999.9 seconds														
Memory			40 gro	ups of s	settings	files / chai	nnels								

Standard Accessories

YT3007 Test Cable YT3008 Test Cable

III. TH6402B Quadruple Programmable DC Power Supply

Features

- Fresh and simple system settings with Chinese and English operation interfaces
- High resolution: 24-bit color 4.3-inch TFTLCD, resolution: 480 x 272
- Linear design and four channel output
- High precision and high stability, low ripple and low noise
- 1/2 2U super mini size and output and sampling terminal on the front and rear panel (The channel only supports front panel output)
- Programmable output of voltage and current
- Timing output: time (0.1-99999.9s)
- Four-channel independent adjustment
- Simultaneously display of voltage, current, power and timing output time for four-channel
- Support series, parallel or synchronous output between channels
- Use rotary knob and numeric keyboard to set the voltage, current and output time
- Remote measurement function, compensation for line voltage drop
- Output control switch
- Fully isolated circuit and support positive and negative reverse connection
- Copy screen function
- Over voltage protection
- Intelligent temperature control fan
- Support standard SCPI communication protocol
- Upgrade instrument firmware via USB HOST
- Software monitoring via computer

TH6402B

Rack mount (mm): 215(W) x 88(H) x 473(D) Dimension (mm): 235(W) x 111(H) x501(D) Net weight: 12kg

Application

- R & D and design verification common test
- Production line table routine testing and maintenance
- Automated device integration testing
- Solar photovoltaic simulation test
- New power car simulation test
- Teaching laboratory

Specifications

Model			TH6402B									
	Channel/Rang	e	Channel1	Channel2	Channel3	Channel4						
Rated output	Voltage		0-30V		0-10V	0-5V						
(0°C- 40°C)	Current		0-3A		0-3A	0-1A						
	Power		90W		30W	5W						
Load regulation	Voltage		≤0.01% + 3 mV									
± (% Output + Bias)	Current		≤0.01% + 3 mA									
Power regulation	Voltage		≤0.01% + 3 mV									
± (% Output + Bias)	Current		≤0.01% + 3 mA									
Programming	Voltage		1mV									
resolution	Current		0.1mA									
Read-back value	Voltage		1mV	1mV								
resolution	Current		0.1mA									
Year accuracy	Programming	Voltage	≤0.1% + 20 mV									
(25°C± 5°C) ± (% Reading +	Programming	Current	≤0.2%+5mA									
Bias)	Read-back	Voltage	≤0.1% + 20 mV									
	Neau-pack	Current	≤0.2%+5mA									
Ripple and Noise	Normal mode	voltage	≤1mVrms/ 3mVp-p									
(20Hz-20MHz)	Normal mode	current	≤3mArms									
Series and parallel set value	Voltage		≤0.02% + 10 mV									
accuracy	Current		≤0.2% + 20 mA									
Timer			0.1 ~ 99999.9 seconds									
Memory			40 groups of settings fi	les / channels								

Standard Accessories

YT3007 Test Cable YT3008 Test Cable

III. TH6500 Series DC Power Supply

Features

- 24-bit color 4.3-inch color LCD display
- LCD resolution 480*272
- Numeric keypad operation
- Low ripple and low noise
- Intelligent fan control to save energy and reduce noise
- Software monitoring via computer
- Editable voltage and current output waveform with time (resolution 1ms) (LBT mode)
- The power output can be turned on and off by an external signal
- The knob can be used to coarsely adjust and fine tune the voltage and current values.
- High accuracy and resolution: 0.1mV/0.01mA
- Timing output time can be set (0.01-9999.99S)
- Screen information can be stored in the USB flash drive
- Chinese and English user interface
- Flexible and convenient file operating system
- Built-in 5 1/2 digital milliohm meter
- Automatic upgrade of instrument operating software via USB HOST
- Handler interface for online operations
- RS232, USB HOST, USB Device, GPIB can easily realize the data communication with PC and remote control of the instrument
- Comes with hardware OVP, OCP protection (OCP is software protection)
- Front panel and rear panel with output and sampling terminals, voltage and resistance measuring terminal
- Support standard SCPI and MODBUS communication protocols

RS232	USB HOST	USB DEVICE	GPIB
standard	standard	standard	option

TH6513

Rack mount (mm): $215(W) \times 88(H) \times 412(D)$ Dimension (mm): $235(W) \times 111(H) \times 440(D)$ Net weight: 8.1kg

Application

- R & D and design verification common test
- Production line table routine testing and maintenance
- Automated device integration testing
- Solar photovoltaic simulation test
- New power car simulation test
- Teaching laboratory

Specifications

Modle		TH6501	TH6502	TH6503	TH6511	TH6512	TH6513					
	Voltage	0-20V	0-32V	0-72V	0-20V	0-32V	0-72V					
Rated output	Current	0-5A	0-3A	0-1.5A	0-10A	0-6A	0-3A					
•	Power	100W	96W	108W	200W	192W	216W					
l and an audation	Voltage	≤0.01%+2mV				0-32V 0-72 0-6A 0-3A 192W 216V						
Load regulation	Current	≤0.05%+1.5m	A									
Davisa na midatian	Voltage	≤0.01%+1mV										
Power regulation	Current	≤0.05%+1mA										
Set value resolution	Voltage	1mV										
Set value resolution	Current	0.1mA										
Read-back	Voltage	0.1mV										
resolution	Current	0.01mA										
Year set accuracy	Voltage	≤0.03%+3mV										
(25°C±5°C)	Current	≤0.05%+2mA										
Year read-back	Voltage	≤0.02%+3mV										
accuracy(25°C±5°C)	Current	≤0.05%+2mA ≤0.05%+2.5mA										
Ripple and Noise	Differential mode voltage	≤3mVp-p and	1mVrms		≤4mVp-p and ′	1mVrms						
(20Hz-20MHz)	Differential mode current	<3mArms <4mArms										
Dynamic recovery tim Restore to time withi		<200us										
Rise time	10%-90%	<20ms										
Fall time	90%-10%	<200ms	<250ms	<150ms	<200ms	<250ms	<150ms					
Overveltage	Range (Typical)	1-19V	1-31V	1-71V	1-19V	1-31V	1-71V					
Overvoltage protection	Accuracy (typical) Response time (typical)	± (set value *0 <10ms	0.5%+0.5V)									
	Display value accuracy	±0.02%+10m	V									
	Display resolution	0.1mv										
DVM(DC)	Input differential mode voltage range	0-40Vpk										
	Input common mode voltage range	0-30Vpk										

Standard Accessories

YT3007 Test Cable(only TH6502/TH6503/TH6513)
YT3008 Test Cable(only TH6501/TH6511/TH6512)

III. TH6700 Series Programmable Switch DC Power Supply

Features

- Wide range, and constant power output
- High efficiency and high power density
- Programmable internal resistance, designed for battery output
- Constant current (CC) priority mode, prevent overshoot for LED power supply

 Master-slave series and parallel operation
- 24-bit 4.3-inch color LCD display
- Numeric keyboard operation
- Voltage and current adjustment with knob
- Timed output (0-3600.0s)
- programmable voltage or current rising time
- RS232, USB HOST, USB DEVICE, LAN, and analog control interface

TH6700

Rack mount (mm): 215(W) x 132(H) x 420(D) Dimension (mm): 215(W) x 146(H) x420(D)

Net weight: 7.5kg

Application

- R & D and design verification common test
- Clean energy, solar cells, electric vehicles
- Production line table routine testing and maintenance
- Automated device integration testing
- Solar photovoltaic simulation test
- Teaching laboratory
- LED test

Brief Introduction

■ TH6700 series is a single channel output, wide range programmable switch mode DC power supply, with three output powers of 360W, 720W, and 1080W. Users are able to realize 2 master-slave in series or 3 master-slave in parallel connection, to achieve the requirements of higher voltage and higher current output.

TH6700 series is designed with adjustable slope function that allows users to set the rise time and fall time of current and voltage output. When testing lighting devices and large capacitors, inrush current will be generated as soon as the output is turned on, which severely shortens the lifetime of the tested parts. In this case, the slope function ensures the voltage transmission is smooth and slow at the switching moment which prevents the tested parts from being damaged.

TH6700 series CV/CC priority mode protects the tested parts well. The traditional power supply in CV mode will instantly bring a large surge current to the capacitive load while turning on the output. TH6700 series power supply can run in CC mode at the start of output, which avoids sudden peak current and protects the device from being damaged by surge current.

TH6700 series can simulate battery output with its programmable internal resistor. For instance, a battery supplies power to a device, the applied voltage drops as it passes through the battery's internal resistance. With TH6700 series power supply, the internal resistance can be simulated by setting values, thus causing the output voltage to

TH6700 series provides OVP, OCP, and OTP protection function. Once the output voltage or current exceeds the preset value, the output will be immediately shut down. Once the temperature inside the machine exceeds a certain temperature, the output will be shut down as well.

TH6700 series can be connected to 2 or 4-terminal measurement from the rear panel. The 4-terminal measurement has the remote compensation function, which compensates the pressure drop from the power supply to the parts to be tested.

TH6700 series is equipped with abundant interfaces, such as USB HOST, USB DEVICE, LAN, RS232, and analog control interface. The CV/CC mode controlled by external voltage and external resistance is implemented through analog control interface. In series or in parallel operation is realized through analog control interface. It also supports external voltage or external resistance to control the instrument output.

Parameter		TH6711	TH6712	TH6713	TH6721	TH6722	TH6723	TH6731	TH6732	TH6733	TH6741	TH6742	TH6743
	Rated Power	360W	720W	1080W	360W	720W	1080W	360W	720W	1080W	360W	720W	1080W
	Max Power	Rated output	*105%										
Rated	Rated Voltage	0-30V	0-30V	0-30V	0-80V	0-80V	0-80V	0-250V			0-800V		
Output	Max Voltage	31.5V			84V			262.5V			840V		
	Rated Current	0-33A	0-66A	0-100A	0-12.5A	0-25A	0-37.5A	4.2A	8.4A	12.6A	1.32A	2.64A	3.96A
	Max Current	36A	72A	108A	13.5A	27A	40.5A	4.5A	9A	13.5A	1.44A	2.88A	4.32A
Setting	Voltage Range	0-31.5V			0-84V			0-262.5V			0-840V		
Setting	Current Range	0-36A	0-72A	0-108A	0-13.5A	0-27A	0-40.5A	0-4.5A	0-9A	0-13.5A	0-1.44A	0-2.884A	0-4.32A
Load	Voltage	≤20mV			≤45mV			≤130mV			≤405mV		
Regulation	Current	≤41mA	≤77mA	≤113mA	≤18.5mA	≤32mA	≤45.5mA	≤9.5mA	≤14mA	≤18.5mA	≤6.44mA	≤7.88mA	≤9.32mA
Line	Voltage	≤18mV			≤43mV			≤128mV			≤403mV		
Regulation	Current	≤41mA	≤77mA	≤113mA	≤18.5mA	≤32mA	≤45.5mA	≤9.5mA	≤14mA	≤18.5mA	≤6.44mA	≤7.88mA	≤9.32mA
Set Value	Voltage	10mV						100mV					
Resolution	Current	10mA	10mA	100mA	10mA	10mA	10mA	1mA	1mA	10mA	1mA	1mA	1mA
Readback	Voltage	10mV						100mV					
Value Resolution	Current	10mA	10mA	100mA	10mA	10mA	10mA	1mA	1mA	10mA	1mA	1mA	1mA
Set Value	Voltage (>0.1V)	≤0.1%+10m\	/					≤0.1%+200	mV		≤0.1%+400	mV	
Accuracy (25°C±5°C)	Current (>0.1A)	≤0.1%+30mA	≤0.1%+60mA	≤0.1%+100mA	≤0.1%+20mA	≤0.1%+40mA	≤0.1%+50mA	≤0.1%+5mA	≤0.1%+10mA	≤0.1%+20mA	≤0.1%+2mA	≤0.1%+4mA	≤0.1%+6mA
Readback	Voltage (>0.1V)	≤0.1%+20m\	/					≤0.1%+200	mV		≤0.1%+400mV		
Value Accuracy (25°C±5°C)	Current (>0.1A)	≤0.1%+40mA	≤0.1%+70mA	≤0.1%+100mA	≤0.1%+20mA	≤0.1%+40mA	≤0.1%+50mA	≤0.1%+5mA	≤0.1%+10mA	≤0.1%+20mA	≤0.1%+2mA	≤0.1%+4mA	≤0.1%+6mA
"Ripple and Noise	Differential Mode Voltage	≤60 m V p - p and 7mVrms	≤80mVp-p and 11mVrms	≤100mVp-p and 14mVrms	≤60mVp-p and 7mVrms	≤80mVp-p and 11mVrms	≤100mVp-p and 14mVrms	≤80mVp-p and 15mVrms	≤100mVp-p and 15mVrms	≤120mVp-p and 15mVrms	≤150mVp-p and 30mVrms	≤200mVp-p and 30mVrms	≤200mVp- and 30mVrms
(20Hz- 2MHz)"	Differential Mode Current	≤72mArms	≤144mArms	≤216mArms	≤27mArms	≤54mArms	≤81mArms	≤10mArms	≤20mArms	≤30mArms	≤5mArms	≤10mArms	≤15mArms

III. TH6700 Series Programmable Switch DC Power Supply

Specifications

"Dynamic Re (50%-100% Frequency =	6 Load) Load	Recover to 0	.1% + 10mV:	≤2ms				≤2ms						
Rise Time (Full Load)	10%-90%	≤50ms						≤100ms			≤150ms			
Rise Time (No Load)	10%-90%	≤50ms						≤100ms			≤150ms			
Drop Time (Full Load)	90%-10%	≤50ms						≤150ms			≤300ms			
Drop Time (No Load)	90%-10%	≤500ms						≤1200ms			≤2000ms			
Timer	Setting Range	0-9999999 (I	Hour, Minute,	Second)				0-9999999	(Hour, Minute	, Second)				
Start Delay	Setting Range	0-99.99s						0-99.99s						
Stop Delay	Setting Range	0-99.99s						0-99.99s						
	Voltage Rise	0.01-60V/s			0.1-160V/s			0.1-500V/s			1-1600V/s			
	Voltage Drop	0.01-60V/s			0.1-160V/s			0.1-500V/s			1-1600V/s			
Slope Setting	Current Rise	0.01-72A/s	0.1-144A/s	0.1-216A/s	0.01-27A/s	0.01-54A/s	0.01-81A/s	0.001-9A/s	0.01-18A/s	0.01-27A/s	0.001- 2.88A/s	0.001- 5.76A/s	0.001- 8.64A/s	
	Current Drop	0.01-72A/s	0.1-144A/s	0.1-216A/s	0.01-27A/s	0.01-54A/s	0.01-81A/s	0.001-9A/s	0.01-18A/s	0.01-27A/s	0.001- 2.88A/s	0.001- 5.76A/s	0.001- 8.64A/s	
Analog Internal Resistance	Setting Range	0-0.833Ω	0-0.417Ω	0-0.278Ω	0-5.926Ω	0-2.963Ω	0-1.975Ω	0-55.55Ω	0-27.77Ω	0-18.51Ω	0-555.5Ω	0-277.8Ω	0-185.1Ω	
"External	CV Accuracy	Rated Output Voltage±0.5% Rated Output Voltage±0.5%												
Voltage Control (25°C±5°C)"	CC Accuracy	Rated Output Current±1%						Rated Output Current±1%						
"External	CV Accuracy	Rated Outpu	t Voltage±1.5	%				Rated Output Voltage±1.5%						
resistance control (25°C±5°C)"	CC Accuracy	Rated Outpu	t Current±1.5	%				Rated Outp	ut Current±1.	5%				
Power	100VAC (Full Load)	0.99						0.99			0.99			
Factor	200VAC (Full Load)	0.97						0.97			0.97			
Efficient	100VAC (Full Load)	75%			76%			77%			78%			
Lincient	200VAC (Full Load)	77%			78%			79%			80%			
Master- Slave	Master-Slave Parallel	3 Sets includ	ling the mater	tester				3 Sets inclu	ding the mate	r tester				
Control	Master-Slave Series		ling the mater					Not Availab	е					
	OVP	3-33V	3-33V	3-33V	8-88V	8-88V	8-88V	20-275V			20-880V			
	Accuracy	N/A						±2% Rated	Output Voltag	ge				
Protection	OCP	3.6-37.8A	5-75.6A	5-113.4A	1.35- 14.18A	2.7-28.35A	4.05- 42.53A	0.45-4.72A	0.9-9.45A	1.35-14.17A	0.144- 1.512A	0.288- 3.024A	0.432- 4.536A	
	Accuracy OTP	N/A Internal Tem	perature Rise	Determines					Output Curre					
Size and	Overall Size (mm)	215(W)×146	(H)×420(D)											
Weight	Shelf Size (mm)	215(W)×132	. , . ,											
	Net Weight	3kg	5.3kg	7.5kg	3kg	5.3kg	7.5kg	3kg	5.3kg	7.5kg	3kg	5.3kg	7.5kg	
Power Suppl	у	88-265VAC,	50/60HZ					88-265VAC, 50/60Hz						

"Note: Power regulation rate (88-132VAC or 170-265VAC, constant load).
Load regulation rate (no load - full load, constant input voltage).
Rise time (10%-90% of rated output voltage, with rated resistive load)
Drop time (90%-10% of rated output voltage, with rated resistive load)
Dynamic recovery time (when the load changes from 50% to 100% of the rated output current, the time for the output voltage to recover within the range of 0.1%+10mV of the rated output"

III. TH6700A Series Programmable Switch DC Power Supply

Features

- Wide range, and constant power output
- High efficiency and high power density
- Programmable internal resistance, designed for battery output simulation
- Constant current (CC) priority mode, prevent overshoot for LED power supply
- Master-slave series and parallel operation
- 4-Digit LED display
- Voltage and current adjustment with knob
- programmable voltage or current rising time
- RS232, USB HOST, USB DEVICE, LAN, and analog control interface

TH6700A

Rack mount (mm):

Dimension (mm):

Net weight:

RS232	LAN	Analog Control Interface	USB HOST	USB DEVICE
standard	standard	standard	standard	standard

Brief Introduction

■ TH6700A series is a single channel output, wide range programmable switch mode DC power supply, with three output powers of 360W, 720W, and 1080W. Users are able to realize 2 master-slave in series or 3 master-slave in parallel connection, to achieve the requirements of higher voltage and higher current output.

TH6700A series is designed with adjustable slope function that allows users to set the rise time and fall time of current and voltage output. When testing lighting devices and large capacitors, inrush current will be generated as soon as the output is turned on, which severely shortens the lifetime of the tested parts. In this case, the slope function ensures the voltage transmission is smooth and slow at the switching moment which prevents the tested parts from being damaged.

TH6700A series CV/CC priority mode protects the tested parts well. The traditional power supply in CV mode will instantly bring a large surge current to the capacitive load while turning on the output. TH6700A series power supply can run in CC mode at the start of output, which avoids sudden peak current and protects the device from being damaged by surge current.

TH6700A series can simulate battery output with its programmable internal resistor. For instance, a battery supplies power to a device, the applied voltage drops as it passes through the battery's internal resistance. With TH6700A series power supply, the internal resistance can be simulated by setting values, thus causing the output voltage to drop

TH6700A series provides OVP, OCP, and OTP protection function. Once the output voltage or current exceeds the preset value, the output will be immediately shut down. Once the temperature inside the machine exceeds a certain temperature, the output will be shut down as well.

TH6700A series can be connected to 2 or 4-terminal measurement from the rear panel. The 4-terminal measurement has the remote compensation function, which compensates the pressure drop from the power supply to the parts to be tested.

Application

- R & D and design verification common test
- Clean energy, solar cells, electric vehicles
- Production line table routine testing and maintenance
- Automated device integration testing
- Solar photovoltaic simulation test
- Teaching laboratory
- LED test

Parameter		TH6711A	TH6712A	TH6713A	TH6721A	TH6722A	TH6723A	TH6731A	TH6732A	TH6733A	TH6741A	TH6742A	TH6743A
	Rated Power	360W	720W	1080W	360W	720W	1080W	360W	720W	1080W	360W	720W	1080W
	Max Power	Rated output	*105%										
Rated	Rated Voltage	0-30V	0-30V	0-30V	0-80V 0-80V 0-80V			0-250V			0-800V		
Output	Max Voltage	31.5V			84V			262.5V			840V		
	Rated Current	0-33A	0-66A	0-100A	0-12.5A	0-25A	0-37.5A	4.2A	8.4A	12.6A	1.32A	2.64A	3.96A
	Max Current	36A	72A	108A	13.5A	27A	40.5A	4.5A	9A	13.5A	1.44A	2.88A	4.32A
Catting	Voltage Range	0-31.5V			0-84V			0-262.5V			0-840V		
Setting	Current Range	0-36A	0-72A	0-108A	0-13.5A	0-27A	0-40.5A	0-4.5A	0-9A	0-13.5A	0-1.44A	0-2.884A	0-4.32A
Load	Voltage	≤20mV			≤45mV			≤130mV			≤405mV		
Regulation	Current	≤41mA	≤77mA	≤113mA	≤18.5mA	≤32mA	≤45.5mA	≤9.5mA	≤14mA	≤18.5mA	≤6.44mA	≤7.88mA	≤9.32mA
Line	Voltage	≤18mV			≤43mV			≤128mV			≤403mV		
Regulation	Current	≤41mA	≤77mA	≤113mA	≤18.5mA	≤32mA	≤45.5mA	≤9.5mA	≤14mA	≤18.5mA	≤6.44mA	≤7.88mA	≤9.32mA
Set Value	Voltage	10mV						100mV					
Resolution	Current	10mA	10mA	100mA	10mA	10mA	10mA	1mA	1mA	10mA	1mA	1mA	1mA
Readback	Voltage	10mV						100mV					
Value Resolution	Current	10mA	10mA	100mA	10mA	10mA	10mA	1mA	1mA	10mA	1mA	1mA	1mA
Set Value	Voltage (>0.1V)	≤0.1%+10m\	/					≤0.1%+200mV			≤0.1%+400mV		
Accuracy (25°C±5°C)	Current (>0.1A)	≤0.1%+30mA	≤0.1%+60mA	≤0.1%+100mA	≤0.1%+20mA	≤0.1%+40mA	≤0.1%+50mA	≤0.1%+5mA	≤0.1%+10mA	≤0.1%+20mA	≤0.1%+2mA	≤0.1%+4mA	≤0.1%+6mA

III. TH6700A Series Programmable Switch DC Power Supply

Specifications

Voltage (>0.1V)	≤0.1%+20mV	1					≤0.1%+200	mV		≤0.1%+400	mV	
Current (>0.1A)	≤0.1%+40mA	≤0.1%+70mA	≤0.1%+100mA	≤0.1%+20mA	≤0.1%+40mA	≤0.1%+50mA	≤0.1%+5mA	≤0.1%+10mA	≤0.1%+20mA	≤0.1%+2mA	≤0.1%+4mA	≤0.1%+6mA
Differential Mode Voltage	≤60 m V p - p and 7mVrms	≤80mVp-p and 11mVrms	≤100mVp-p and 14mVrms	≤60mVp-p and 7mVrms	≤80mVp-p and 11mVrms	≤100mVp-p and 14mVrms	and	≤100mVp-p and 15mVrms	≤120mVp-p and 15mVrms	≤150mVp-p and 30mVrms	≤200mVp-p and 30mVrms	≤200mVp-p and 30mVrms
Differential Mode Current	≤72mArms	≤144mArms	≤216mArms	≤27mArms	≤54mArms	≤81mArms	≤10mArms	≤20mArms	≤30mArms	≤5mArms	≤10mArms	≤15mArms
covery Time 5 Load) Load 100Hz"	Recover to 0.	1% + 10mV: :	≤2ms				≤2ms					
10%-90%	≤50ms						≤100ms			≤150ms		
10%-90%	≤50ms						≤100ms			≤150ms		
90%-10%	≤50ms						≤150ms			≤300ms		
90%-10%	≤500ms						≤1200ms ≤2000ms					
Setting Range	0-99.99s						0-99.99s					
Setting Range	0-99.99s						0-99.99s					
Voltage Rise	0.01-60V/s			0.1-160V/s			0.1-500V/s			1-1600V/s		
Voltage Drop	0.01-60V/s			0.1-160V/s			0.1-500V/s			1-1600V/s		
Current Rise	0.01-72A/s	0.1-144A/s	0.1-216A/s	0.01-27A/s	0.01-54A/s	0.01-81A/s	0.001-9A/s	0.01-18A/s	0.01-27A/s	0.001- 2.88A/s	0.001- 5.76A/s	0.001- 8.64A/s
Current Drop	0.01-72A/s	0.1-144A/s	0.1-216A/s	0.01 - 27A/s	0.01-54A/s	0.01-81A/s	0.001-9A/s	0.01-18A/s	0.01 - 27A/s	0.001- 2.88A/s	0.001- 5.76A/s	0.001- 8.64A/s
Setting Range	0-0.833Ω	0-0.417Ω	0-0.278Ω	0-5.926Ω	0-2.963Ω	0-1.975Ω	0-55.55Ω	0-27.77Ω	0-18.51Ω	0-555.5Ω	0-277.8Ω	0-185.1Ω
CV Accuracy	Rated Output	Voltage±0.5	%				Rated Outp	ut Voltage±0.	5%			
CC Accuracy	Rated Output	Current±1%					Rated Outp	ut Current±19	%			
CV Accuracy	Rated Output	: Voltage±1.5	%				Rated Outp	ut Voltage±1.	5%			
CC Accuracy	Rated Output	Current±1.5	%				Rated Outp	ut Current±1.	5%			
100VAC (Full Load)	0.99						0.99			0.99		
200VAC (Full Load)	0.97						0.97			0.97		
(Full Load)	75%			76%			77%			78%		
(Full Load)	77%			78%			79%			80%		
Parallel	3 Sets includi	ing the mater	tester				3 Sets inclu	ding the mate	er tester			
Series			I	0.001	0.001	0.00/		ding the mate	er tester			
-		3-33V	3-33V	8-88V	8-88V	8-88V		0.4		20-880V		
				1 35_		4.05-				0.144	n 288	0.432-
OCP	3.6-37.8A	5-75.6A	5-113.4A	14.18A	2.7-28.35A	42.53A			1.35-14.17A	1.512A	3.024A	4.536A
A	NI/A						±2% Rated Output Current Internal Temperature Rise Determines					
Accuracy OTP	N/A Internal Temp	anakus Dis	Determe!:					•				
	Current (>0.1A) Differential Mode Voltage Differential Mode Current Covery Time Load) Load 00Hz* 10%-90% 10%-90% 90%-10% 90%-10% Setting Range Setting Range Voltage Rise Voltage Drop Current Drop Setting Range CV Accuracy CC Accuracy Master-Slave Parallel Master-Slave Series OVP Accuracy	Current (>0.1A) ≤0.1%+40mA Differential Mode Current ≤6.0 m V p - p and 7 m V rms Differential Mode Current ≤72mArms 200very Time Load) Load Recover to 0.0 10%-90% ≤50ms 10%-90% ≤50ms 90%-10% ≤50ms 90%-10% ≤50ms Setting Range 0-99.99s Setting Range 0-99.99s Voltage Rise 0.01-60V/s Current Rise 0.01-72A/s Current Drop 0.01-72A/s Setting Range 0-0.833Ω CV Accuracy Rated Output CV Accuracy 75% 200VAC 77% Master-Slave 3 Sets includi Master-Slave 2 Sets includi Master-Slave 2 Sets includi OVP<	Current (>0.1A) ≤0.1%+40mA ≤0.1%+70mA Differ en tial Mode Current ≤60 m V p - p and 11mVrms ≤80mVp-p and 11mVrms Differ en tial Mode Current ≤72mArms ≤144mArms 20very Time Load) Load OHz* Recover to 0.1% + 10mV: 30mS 10%-90% ≤50ms 10%-90% ≤50ms 90%-10% ≤50ms 90%-10% ≤50ms Setting Range 0-99.99s Setting Range 0-99.99s Voltage Rise 0.01-60V/s Voltage Drop 0.01-60V/s Current Rise 0.01-72A/s 0.1-144A/s Setting Range 0-0.833Ω 0-0.417Ω CV Accuracy Rated Output Voltage±0.5' CC Accuracy Rated Output Voltage±1.5' CC Accuracy Rated Output Voltage±1.5' CC Accuracy Rated Output Current±1.5' 100VAC (Full Load) 0.97 100VAC (Full Load) 75% 200VAC (Full Load) 77% Master-Slave Series 2 Sets including the mater Master-Slave Series 2 Sets including the mater <td>Current (>0.1A) ≤0.1%+40mA ≤0.1%+70mA ≤0.1%+100mA Differential Mode Voltage ≤60 mV p-p and 11mVrms ≤100mVp-p and 11mVrms ≤100mVp-p and 11mVrms Differential Mode Current ≤72mArms ≤144mArms ≤216mArms 200very Time Load) Load OHz" secover to 0.1% + 10mV: ≤2ms ≤216mArms 10%-90% ≤50ms √ 90%-10% ≤50ms √ 90%-10% ≤50ms √ Setting Range 0-99.99s √ Setting Range 0-99.99s √ Voltage Rise 0.01-60V/s √ Current Rise 0.01-60V/s 0.1-144A/s 0.1-216A/s Current Drop 0.01-72A/s 0.1-144A/s 0.1-216A/s Setting Range 0-0.83Ω 0-0.417Ω 0-0.278Ω CV Accuracy Rated Output Voltage±0.5√ CC Accuracy Rated Output Voltage±1.5√ CC Accuracy Rated Output Current±1.5√ CO Accuracy Rated Output Current±1.5√ CO Accuracy 75% 200VAC (Full Load) 75%</td> <td>Current (>0.1A) \$0.1%+40mA \$0.1%+70mA \$0.1%+100mA \$0.1%+20mA Differential Mode Current Pland Mode Current Load) Load Recover to 0.1% + 10mV: \$216mArms \$216mArms \$27mArms Differential Mode Current Load) Load Recover to 0.1% + 10mV: \$216mArms \$27mArms \$216mArms \$27mArms 10%-90% \$50ms \$50ms \$250ms \$250</td> <td>Current (>0.1A) \$0.1%+40mA \$0.1%+70mA \$0.1%+100mA \$0.1%+20mA \$0.1%+40mA Differential pland 7mVrms \$6.0 m V p - pland 7mVrms \$100mV p and 7mVrms \$60mV p - pland 7mVrms \$80mV p - pland 7mVrms<td>Current (>0.1A) \$0.1%+40mA \$0.1%+70mA \$0.1%+100mA \$0.1%+20mA \$0.1%+40mA \$0.1%+50mA Differential Mode Voltage and 7mVms Mode Current Load) \$60mVp-p and 1mVrms \$60mVp-p and 1mVrms \$100mVp-p and 1mVrms \$100mVp-p and 1mVrms \$1100mVp-p and 1mVr</td><td>Current (-0.1A)</td><td> Differential of S0 my</td><td> Current (-0.1A) </td><td> Current (Pol. 1) 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 540 </td><td> Current (201 A) 201% 40m 40m </td></td>	Current (>0.1A) ≤0.1%+40mA ≤0.1%+70mA ≤0.1%+100mA Differential Mode Voltage ≤60 mV p-p and 11mVrms ≤100mVp-p and 11mVrms ≤100mVp-p and 11mVrms Differential Mode Current ≤72mArms ≤144mArms ≤216mArms 200very Time Load) Load OHz" secover to 0.1% + 10mV: ≤2ms ≤216mArms 10%-90% ≤50ms √ 90%-10% ≤50ms √ 90%-10% ≤50ms √ Setting Range 0-99.99s √ Setting Range 0-99.99s √ Voltage Rise 0.01-60V/s √ Current Rise 0.01-60V/s 0.1-144A/s 0.1-216A/s Current Drop 0.01-72A/s 0.1-144A/s 0.1-216A/s Setting Range 0-0.83Ω 0-0.417Ω 0-0.278Ω CV Accuracy Rated Output Voltage±0.5√ CC Accuracy Rated Output Voltage±1.5√ CC Accuracy Rated Output Current±1.5√ CO Accuracy Rated Output Current±1.5√ CO Accuracy 75% 200VAC (Full Load) 75%	Current (>0.1A) \$0.1%+40mA \$0.1%+70mA \$0.1%+100mA \$0.1%+20mA Differential Mode Current Pland Mode Current Load) Load Recover to 0.1% + 10mV: \$216mArms \$216mArms \$27mArms Differential Mode Current Load) Load Recover to 0.1% + 10mV: \$216mArms \$27mArms \$216mArms \$27mArms 10%-90% \$50ms \$50ms \$250ms \$250	Current (>0.1A) \$0.1%+40mA \$0.1%+70mA \$0.1%+100mA \$0.1%+20mA \$0.1%+40mA Differential pland 7mVrms \$6.0 m V p - pland 7mVrms \$100mV p and 7mVrms \$60mV p - pland 7mVrms \$80mV p - pland 7mVrms <td>Current (>0.1A) \$0.1%+40mA \$0.1%+70mA \$0.1%+100mA \$0.1%+20mA \$0.1%+40mA \$0.1%+50mA Differential Mode Voltage and 7mVms Mode Current Load) \$60mVp-p and 1mVrms \$60mVp-p and 1mVrms \$100mVp-p and 1mVrms \$100mVp-p and 1mVrms \$1100mVp-p and 1mVr</td> <td>Current (-0.1A)</td> <td> Differential of S0 my</td> <td> Current (-0.1A) </td> <td> Current (Pol. 1) 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 540 </td> <td> Current (201 A) 201% 40m 40m </td>	Current (>0.1A) \$0.1%+40mA \$0.1%+70mA \$0.1%+100mA \$0.1%+20mA \$0.1%+40mA \$0.1%+50mA Differential Mode Voltage and 7mVms Mode Current Load) \$60mVp-p and 1mVrms \$60mVp-p and 1mVrms \$100mVp-p and 1mVrms \$100mVp-p and 1mVrms \$1100mVp-p and 1mVr	Current (-0.1A)	Differential of S0 my	Current (-0.1A)	Current (Pol. 1) 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 54 540 20 540	Current (201 A) 201% 40m 40m

"Note: Power regulation rate (88-132VAC or 170-265VAC, constant load).
Load regulation rate (no load - full load, constant input voltage).
Rise time (10%-90% of rated output voltage, with rated resistive load)
Drop time (90%-10% of rated output voltage, with rated resistive load)
Dynamic recovery time (when the load changes from 50% to 100% of the rated output current, the time for the output voltage to recover within the range of 0.1%+10mV of the rated output"

III. TH6900 Series Programmable DC Power Supply

Features

- The output range is 3 times of the equal power "rectangular" power supply
- High frequency LLC multi-resonant inverter, the efficiency of the whole machine is as high as 93%
- Active PFC, power factor up to 0.99
- High resolution, high precision; low ripple, low noise
- ≤2ms fast transient response
- The rising edge and falling edge speed of the output are adjustable
- Power supply constant voltage (CV), constant current (CC), constant power (CP) mode
- The master-slave mode supports parallel connection, active current sharing, and parallel connection of up to 10 units of the same type
- OVP, OCP, OPP, OTP, input undervoltage protection, SENSE terminal reverse connection protection
- Built-in function generator
- Equipped with discharge circuit (Uout< 10V within 1s)
- Separate control of power output through external analog interface
- High-brightness color LCD display
- Flexible and powerful sequence test function
- Support SCPI command language
- Interface: RS232, USB HOST, Optional (RS485, LAN)

Application

- General testing for R&D and design verification
- New energy solar cells, new power vehicles, electric bicycles
- Routine test and maintenance of production line workbench
- Automated device integration testing
- Solar photovoltaic simulation test
- Teaching laboratory
- LED test

TH6900

Rack mount (mm): 482(W) x 88(H) x 455(D) Net weight : 13.5kg

Brief Introduction

■ TH6900 series is a programmable switching DC power supply with a wide range of output. There are 21 models of 750W, 1500W and 3000W available. The instrument supports up to 10 master-slave units of the same model in parallel to meet higher output current and output power requirements.

TH6900 series supports sequence test function, allowing users to set a series of voltage, current, power, and automatically output according to the set rules, to better meet the user's application of automatic test and burn-in test. The instrument can store 50 sequences, each sequence contains 22 steps, the function of each step can be set independently, a total of 12 independent functions, including loop control, slope mode output and other rich control functions.

This instrument can output sine wave, square wave, triangle wave, trapezoidal wave, etc. according to the set parameters such as voltage and current. Based on these waveforms, users can form a sequence output. The sequence can be set up to ten steps, and each step can be set to any A waveform and the duration of the waveform, which is convenient for users to test products. In addition, the TH6900 power supply has a solar cell array simulation function. In addition to CC, CV, EN50530 and other modes output through the host computer software, the single machine also has a built-in model for simulating the output curve of the solar cell array.

This series of power supplies also have adjustable rising and falling edge speeds. In all modes (source CV, CC, CP), the rise and fall time can be set, and the setting range is 0.015~999.99S.

Parameter	Model	TH6940-60	TH6980-30	TH69200-12.5	TH69360-7.5	TH69500-5	TH69750-3	TU601000 2 5		
Parameter								TH691000-2.5		
	Voltage	40V	80V	200V	360V	500V	750V	1000V		
Rated Output	Current	60A	30A	12.5A	7.5A	5A	3A	2.5A		
rator output	Power	750W								
	Efficient	≤92%	≤92%	≤92%	≤93%	≤93%	≤93%	≤93%		
Load Regulation Rate	Voltage	<=0.05%FS (0-100% Load	Regulation Rate)						
Load Negulation Nate	Current	<=0.15%FS ((0-100%∆UDC	Load Regulation	Rate)					
Line Regulation Rate	Voltage	<=0.02%FS	(±10%∆UAC	Input)						
Line Negulation Nate	Current	<=0.05%FS (±10%∆UAC I	nput)						
Set Value Resolution	Voltage	10mV	10mV	10mV	10mV	10mV	10mV	10mV		
Set value Nesolution	Current	10mA	10mA	10mA	1mA	1mA	1mA	1mA		
Readback Value	Voltage	10mV	10mV	10mV	10mV	10mV	10mV	10mV		
Resolution	Current	10mA	10mA	10mA	1mA	1mA	1mA	1mA		
0.111	Voltage	≤±(0.05%+0.	04%FS)							
Set Value Accuracy (25°C±5°C)	Current	≤±(0.15%+0.	1%FS)							
(20 0 ± 0 0)	Power	≤±0.8%FS								
Readback Value	Voltage	≤±(0.05%+0.	04%FS)							
Accuracy	Current	≤±(0.15%+0.	1%FS)							
(25°C±5°C)	Power	≤±0.8%FS								
"Ripple and Noise	RMS (20Hz-300kHz)	10mVrms	10mVrms	20mVrms	40mVrms	50mVrms	75mVrms	100mVrms		
(20Hz-2MHz)"	P-P (20Hz-2MHz)	75mVpp	100mVpp	175mVpp	250mVpp	325mVpp	500mVpp	650mVpp		
Rise Time (No Load)	10%-100%	≤2ms								
Rise Time (Full Load)	10%-90%	≤30ms								
Protection		OTP, OVP, OCP, OPP, PF								

III. TH6900 Series Programmable DC Power Supply

Isolated Withstand Volt	age	1000VDC (Output to Ground)
Master-Slave Control		Connect up to 10 products (via shared bus) with true master-slave operation
Storage		10 groups of working modes; 50 sequences, 20 steps per group
	Specification	Built-in 15-pin D-Sub female connector, electrically isolated
Analog Interface	Signal Range	0-5V or 0-10V (Switchable)
	U/I/P Accuracy	0-10V: <=0.2%FS 0-5V: <=0.4%FS
Communication	Standard	RS232, USB HOST
Interface	Optional	RS485, CAN, LAN
	Phase	1ph+N+PE
Dawar Cumply	Voltage	220VAC±10%
Power Supply	Frequency	45-66Hz
	Power Factor	≥0.99
Working Environment		Indoor type; Working temperature: 0~50°C, Humidity: <80%, no condensation, Storage temperature: -20~70°C, Altitude: <2000m
Size W×H×D(mm)		482mm×88mm×455mm (W×H×D) Standard Frame, 2U High.
Weight		9.6kg

Parameter	Model	TH6935-100	TH6980-60	TH69200-25	TH69360-15	TH69500-10	TH69750-6	TH691000-5				
	Voltage	35V	80V	200V	360V	500V	750V	1000V				
Rated Output	Current	100A	60A	25A	15A	10A	6A	5A				
Rated Output	Power	1500W					750V 6A ≤93% 10mV 1mA 10mV 10mV					
	Efficient	≤92%	≤92%	≤92%	≤93%	≤93%		≤93%				
Load Dogulation Data	Voltage	<=0.05%FS (0	0-100% Load I									
Load Regulation Rate	Current	<=0.15%FS (0	0-100%∆UDC	Load Regulation	Rate)							
Line Degulation Data	Voltage	<=0.02%FS (0.02%FS (±10%∆UAC Input)									
Line Regulation Rate	Current	<=0.05%FS (±	±10%∆UAC In	put)								
Set Value Resolution	Voltage	10mV	10mV	10mV	10mV	10mV	10mV	10mV				
Set value Resolution	Current	10mA	10mA	10mA	10mA	10mA	1mA	1mA				
Readback Value	Voltage	10mV	10mV	10mV	10mV	10mV	10mV	10mV				
Resolution	Current	10mA	10mA	10mA	10mA	10mA	1mA	1mA				
	Voltage	≤±(0.05%+0.0)4%FS)									
Set Value Accuracy (25℃±5℃)	Current	≤±(0.15%+0.1	l%FS)									
(25 0 ± 5 0)	Power	≤±0.8%FS										
Readback Value	Voltage	≤±(0.05%+0.0)4%FS)									
Accuracy	Current	≤±(0.15%+0.1	l%FS)									
(25°C±5°C)	Power	≤±0.8%FS										
"Ripple and Noise	RMS (20Hz-300kHz)	10mVrms	10mVrms	20mVrms	40mVrms	50mVrms	75mVrms	100mVrms				
(20Hz-2MHz)"	P-P (20Hz-2MHz)	75mVpp	100mVpp	175mVpp	250mVpp	325mVpp	500mVpp	650mVpp				
Rise Time (No Load)	10%-100%	≤2ms										
Rise Time (Full Load)	10%-90%	≤30ms										
Protection		OTP, OVP,	OCP, OPP,	PF								
Isolated Withstand Volta	age	1000VDC (Ou	tput to Ground	d)								
Master-Slave Control		Connect up to	10 products (via shared bus) v	with true master-	slave operation	l					
Storage		10 groups of v	vorking modes	s; 50 sequences,	20 steps per gre	oup						
	Specification	Built-in 15-pin	D-Sub female	connector, elec	trically isolated							
Analog Interface	Signal Range	0-5V or 0-10V	(Switchable)									
	U/I/P Accuracy	0-10V: <=0.2%	%FS 0-5V: <=0).4%FS								
Communication	Standard	RS232, USB I	HOST									
Interface	Optional	RS485, CAN,	GPIB, LAN									
	Phase	1ph+N+PE										
Power Supply	Voltage	220VAC±10%)									
rower Supply	Frequency	45-66Hz										
	Power Factor	≥0.99										
Working Environment		Indoor type; Working temperature: 0~50°C, Humidity: <80%, no condensation, Storage temperature -20~70°C, Altitude: <2000m										
Size W×H×D(mm)		482mm×88mr	m×455mm (W	×H×D) Standard	l Frame, 2U Higl	า.						
Weight	10.8kg											

III. TH6900 Series Programmable DC Power Supply

Parameter	Model	TH6935-200	TH6980-120	TH69200-50	TH69360-30	TH69500-20	TH69750-12	TH691000-10						
	Voltage	35V	80V	200V	360V	500V	750V	1000V						
D-tI Outt	Current	200A	120A	50A	30A	20A	12A	10A						
Rated Output	Power	3000W												
	Efficient	≤92%	≤92%	≤92%	≤93%	≤93%	750V 12A ≤93% 10mV 10mA 10mV 10mA 75mVrms 500mVpp	≤93%						
Load Dogulation Data	Voltage	<=0.05%FS (0-	-100% Load Reg	gulation Rate)										
Load Regulation Rate	Current	10mA 10mA 10mA 10mA 10mA 10mA 10mV 10mV 10mV 10mV 10mV 10mV 10mA 10mA 10mA 10mA 10mA 10mA ≤±(0.05%+0.04%FS) ≤±(0.15%+0.1%FS)												
Line Regulation Rate	Voltage	<=0.02%FS (±	10%∆UAC Inpu	ıt)										
Line Regulation Rate	Current	<=0.05%FS (±	10%∆UAC Input	t)										
Set Value Resolution	Voltage	10mV	10mV	10mV	10mV	10mV	10mV	10mV						
Set value Resolution	Current	10mA	10mA	10mA	10mA	10mA	10mA	10mA						
Readback Value	Voltage	10mV	10mV	10mV	10mV	10mV	10mV	10mV						
Resolution	Current	10mA	10mA	10mA	10mA	10mA	10mA	10mA						
0.111	Voltage	≤±(0.05%+0.04	4%FS)											
Set Value Accuracy (25°C±5°C)	Current	≤±(0.15%+0.19	%FS)											
(20 0 ± 0 0)	Power	≤±0.8%FS												
Readback Value	Voltage	≤±(0.05%+0.04%FS)												
Accuracy	Current	≤±(0.15%+0.19	%FS)											
(25°C±5°C)	Power	≤±0.8%FS												
"Ripple and Noise	RMS (20Hz-300kHz)	10mVrms	10mVrms	20mVrms	40mVrms	50mVrms	75mVrms	100mVrms						
(20Hz-2MHz)"	P-P (20Hz-2MHz)	75mVpp	100mVpp	175mVpp	250mVpp	325mVpp	500mVpp	650mVpp						
Rise Time (No Load)	10%-100%	≤2ms												
Rise Time (Full Load)	10%-90%	≤30ms												
Protection		OTP, OVP, OC	P, OPP, PF											
Isolated Withstand Voltage	ge	1000VDC (Out	put to Ground)											
Master-Slave Control		Connect up to	10 products (via	shared bus) w	ith true master-	slave operation								
Storage		10 groups of w	orking modes; 5	0 sequences, 2	0 steps per gro	oup								
	Specification	Built-in 15-pin l	D-Sub female co	nnector, electri	cally isolated									
Analog Interface	Signal Range	0-5V or 0-10V	(Switchable)											
	U/I/P Accuracy	0-10V: <=0.2%	FS 0-5V: <=0.49	%FS										
Communication	Standard	RS232, USB H	OST											
Interface	Optional	RS485, CAN, 0	GPIB, LAN											
	Phase	1ph+N+PE												
Power Supply	Voltage	220VAC±10%												
Fower Supply	Frequency	45-66Hz												
	Power Factor	≥0.99												
Working Environment		Indoor type; Working temperature: 0~50°C, Humidity: <80%, no condensation, Storage temperature -20~70°C, Altitude: <2000m												
		,				482mm×88mm×455mm (W×H×D) Standard Frame, 2U High.								
Size W×H×D(mm)				×D) Standard I	rame, 2U High	1.								

III. TH7100 Series Programmable AC Power Supply

Features

- 24-bit color 4.3-inch 480 × 272 color LCD screen, Chinese and English interfaces
- Linear output design
- Flexible and convenient operation: numeric keypad, coarse and fine adjustment knob
- Manual / program control mode output function, timing output function, dimming mode output function, surge and notch function
- Front panel output function
- Boot hold function
- Store setting parameters and test results
- Support USB to upgrade the instrument firmware
- Multiple protection modes: set the current protection (HI-A) Overvoltage Protection (OVP), Low Voltage Protection (LVP) Overcurrent protection (OCP), over power protection (OPP) Over temperature protection (OTP)
- Two-gear temperature to control fan speed
- Remote input and output functions:
 Remote input: input control of 7 groups of memory
 Remote output: PASS, FAIL, PROCESSING, internal output switch
- Memory capacity: Manual: 50 groups

Program control: 50 groups, 9 steps / group

RS232	REMOTE	USB HOST	USB DEVICE	GPIB
standard	standard	standard	standard	option

TH7110

Dimension(mm): 430(W)×88(H)×600(D) Weight: 40kg

Application

- Motors and transformers
- Electronic production design
- Lighting
- Aerospace military
- Network communication
- Audio and video equipment
- Monitoring equipment
- Power specifications simulation of different countries
- Electromagnetic compatibility equipment

-						
Model		TH7105		TH7110	TH7120	
Output paramet	ers					
Rated power		500W		1000W	2000W	
Output voltage		0~300V				
Output frequence	су	45.0Hz~500Hz				
Maximum	0-150V	4.2A		8.4A	16.8A	
current (RMS)	0-300V	2.1A		4.2A	8.4A	
Maximum	0-150V	16.8A		33.6A	67.2A	
current (Peak)	0-300V	8.4A		16.8A	33.6A	
Total harmonic	distortion (THD	at 45.0 ~ 500Hz, ≤ 0	0.5% (resistiv	re load)		
	Phase	1Ø/2W				
	Crest factor	≥4				
Common parameters	Linearity adjustment rate	0.1%±10%				
	Load regulation	0.5%(resistive load)				
	Response time	<100uS				
Setting paramet	ters					
Voltage		0 ~ 300V		0.1V		±0.5%+2 digits
Frequency		45.0Hz ~ 500Hz	Resolution	<100Hz: 0.1Hz ; ≥100Hz: 1Hz	Accuracy	±0.02%
Initial / final pha	se angle	0 ~ 359°		1°		±1°(45 ~ 65Hz)
Measurement p	arameters					
Voltage		0 ~ 300V	Resolution	0.1V	A course.	±0.5%+2 digits
Frequency		45.0Hz ~ 500Hz	Resolution	<100Hz: 0.1Hz ; ≥100Hz: 1Hz	Accuracy	±0.1Hz
	0-150V	0.000 ~ 4.200A		0.000 ~ 8.400A	0.000 ~ 16.	800A
Current	0-300V	0.000 ~ 2.100A		0.000 ~ 4.200A	0.000 ~ 8.4	00A
Current	Resolution	0.001A				
	Accuracy	±0.5%+5 digits				
	0-150V	0.00 ~ 12.6A		0.00 ~ 25.2A	0.00 ~ 50.4	A
Peak current	0-300V	0.00 ~ 6.3A		0.00 ~ 12.6A	0.00 ~ 25.2	A
Peak current	Resolution	0.01A				
	Accuracy	±5%+2 digits				
	Range	0 ~ 500W		0 ~ 1000W	0 ~ 2000W	
Power	Resolution	0.1W		'	0.1W(0 ~ 2000W)	1000W);1W(1000 ~
	Accuracy	±0.6%+5 digits			,	
Power factor	<u> </u>	0.001-1.000	Resolution	0.001	Accuracy	±2%+2 digits

III. TH8200 Series Programmable DC Electronic Load

Features

- Constant current (CC), constant resistance (CR), constant power (CV), constant power (CP) operation mode
- Current remote control monitoring function, external trigger function
- 1mV/10µA high resolution, ripple measurement function
- Dynamic current/voltage test, up to 50K dynamic frequency
- Voltage and current measurement can achieve high precision while testing speed up to 100KHz
- Programmable soft start function
- CR-LED test, arbitrary I-V characteristics, battery test, dynamic scan test, load effect, list function and many other advanced functions
- Overvoltage (programmable), low voltage, over current (programmable), overpower (programmable), overheating, anti-reverse protection, etc.
- Remote voltage compensation input test function
- Short circuit function simulation
- The adoption of the Linux operating system makes the number of internal parameter file storages essentially unrestricted
- Perfect U disk function (parameter file storage and loading, interface screenshot, system firmware upgrade)
- Setting parameters support power-off memory function
- Intelligent temperature control fan
- RS232 (standard), USB (standard), Ethernet (standard), WIFI (optional)
- Matching with upper-computer software to achieve remote operation and monitoring matching

Dimension(mm): 215mm(W)x143mm(H)x525mm(D)[TH8201/TH8202/A] Dimension(mm): 430mm(W)x143mm(H)x525mm(D)[TH8203/TH8204] Weight: 7.8kg[TH8201] / 9.1kg[TH8202] / 8.7kg[TH8202A]

Application

Power

Chargers, switching power supply, communication power, LED drivers, cell phone batteries, portable power source

- New energy Solar cells, new power cars, electric bicycles
- Electronic power components Fuse / Connector / Relay / Sensor
- Automated equipment integration testing

Model		TH8201	TH8202	TH8202A	TH8202B	TH8203	TH8203A	TH8204	TH8204A	TH8204B	TH8205
Input power	er	175W	350W	350W	500W	700W	700W	1000W	1000W	1200W	2000W
Input volta	ge	150V									
Input curre	ent	0-40A	0-80A	0-40A	0-60A	0-160A	0-/80A	0-200A	0-100A	0-160A	0-200A
Static mod	le	Constant cur	rent (CC), con	stant resistan	ce (CR), const	tant voltage (C'	V), constant po	ower (CP)			
		1.5V@0.4A	1.5V@0.8A	1.5V@0.4A	1.5V@0.8A	1.5V@1.6A	1.5V@0.8A	1.5V@2A	1.5V@1A	1.5V@1.6A	1.5V@2A
Minimum o	operating	1.5V@4A	1.5V@8A	1.5V@4A	1.5V@8A	1.5V@16A	1.5V@8A	1.5V@20A	1.5V@10A	1.5V@16A	1.5V@20A
voltage		1.5V@40A	1.5V@80A	1.5V@40A	1.5V@80A	1.5V@160A	1.5V@80A	1.5V@200A	1.5V@100A	1.5V@160A	1.5V@200A
	Range	0-15V									
	Resolution	1mV									
Constant	Range	0-150V									
voltage	Resolution	10mV									
(CV)	Precision	0.05%+0.05%	%FS								
	Range	0-400mA	0-800mA	0-400mA	0-800mA	0-1.6A	0-0.8A	0-2A	0-1A	0-1.6A	0-2A
	Resolution	0.01mA	0.02mA	0.01mA	0.02mA	0.04mA	0.02mA	0.06mA	0.03mA	0.04mA	0.05mA
	Range	0-4A	0-8A	0-4A	0-8A	0-16A	0-8A	0-20A	0-10A	0-16A	0-20A
Constant	Resolution	0.1mA	0.2mA	0.1mA	0.2mA	0.4mA	0.2mA	0.6mA	0.3mA	0.4mA	0.5mA
current	Range	0-40A	0-80A	0-40A	0-80A	0-160A	0-80A	0-200A	0-100A	0-160A	0-200A
(CC)	Resolution	1mA	2mA	1mA	2mA	4mA	2mA	6mA	3mA	4mA	5mA
,	Precision	0.1%+0.1%F	S.	•	•	'	•	•	•		•
	Range	0.04Ω-40Ω	0.02Ω-20Ω	0.04Ω-40Ω	0.02Ω-20Ω	0.018Ω-18Ω	0.036Ω-36Ω	0.015Ω-15Ω	0.03Ω-30Ω	0.018Ω-18Ω	0.015Ω-15Ω
	Range	0.4Ω-400Ω	0.2Ω-200Ω	0.4Ω-400Ω	0.2Ω-200Ω	0.072Ω-72Ω	0.144Ω-144Ω	0.06Ω-60Ω	0.12Ω-120Ω	0.072Ω-72Ω	0.06Ω-60Ω
Constant	Range	4.0Ω-4000Ω	2.0Ω-2000Ω	4.0Ω-4000Ω	2.0Ω-2000Ω	1.8Ω-3000Ω	3.6Ω-3000Ω	1.5Ω-3000Ω	3Ω-3000Ω	1.8Ω-3000Ω	1.5Ω-3000Ω
resistance	Resolution			•	•	'	•	•	•		•
(CR)	Precision	Vin/Rset*0.29	%+0.2%FS								
	Range	0-1.75W	0-3.5W	0-3.5W	0-5W	0-7W	0-7W	0-10W	0-10W	0-12W	0-20W
	Resolution	0.175mW	0.35mW	0.35mW	0.5mW	0.7mW	0.7mW	1mW	1mW	1.2mW	2mW
Canatant	Range	0-17.5W	0-35W	0-35W	0-50W	0-70W	0-70W	0-100W	0-100W	0-120W	0-200W
Constant	Resolution	1.75mW	3.5mW	3.5mW	5mW	7mW	7mW	10mW	10mW	12mW	20mW
power	Range	0-175W	0-350W	0-350W	0-500W	0-700W	0-700W	0-1000W	0-1000W	0-1200W	0-2000W
(CP)	Resolution	17.5mW	35mW	35mW	50mW	70mW	70mW	100mW	100mW	120mW	200mW
	Precision	0.3%+0.3%F	S		•	'	•				
Dimension	s and weigh	nt									
Dimension		215*129*479	mm			430*129*479r	nm			430*129*479	mm
Weight(kg)	7.8kg	9.1kg	8.7kg	9.1kg	15.6kg	15.3kg	17.6kg	17.3kg	17.6kg	20kg

III. TH8200 Series Programmable DC Electronic Load

Model		TH8212	TH8214	TH8215
Input power		500W	800W	1200W
Input voltage		10-800V		
Input current		0-15A	0-30A	60A
Static mode		Constant current (CC), constant resistance	(CR), constant voltage (CV), constant power	(CP)
		10V@0.15A	10V@0.3A	10V@0.6A
Minimum ope	erating	10V@1.5A	10V@3A	10V@6A
voltage		10V@15A	10V@30A	10V@60A
	Range	0-80V		
	Resolution	5mV		
Constant voltage	Range	0-800V		
(CV)	Resolution	50mV		
	Precision	0.05%+0.05%FS		
	Range	0-0.15A	0-0.3A	0-0.6A
	Resolution	0.01mA	0.01mA	0.02mA
	Range	0-0.15A	0-3A	0-6A
Constant	Resolution	0.1mA	0.1mA	0.2mA
current (CC)	Range	0-15A	0-30A	0-60A
(00)	Resolution	1mA	1mA	2mA
	Precision	0.1%+0.1%FS		
	Range	0.3Ω-3kΩ	0.2Ω-2kΩ	0.15Ω-1.5kΩ
	Range	1.2Ω-12kΩ	0.8Ω-8kΩ	0.6Ω-6kΩ
Constant resistance	Range	30Ω-60kΩ	20Ω-40kΩ	15Ω-60kΩ
(CR)	Resolution			
	Precision	Vin/Rset*0.2%+0.2%FS		
	Range	0-5W	0-8W	0-12W
	Resolution	0.5mW	0.8mW	1.2mW
Constant	Range	0-50W	0-80W	0-120W
power	Resolution	5mW	8mW	12mW
(CP)	Range	0-50W	0-800W	0-1200W
	Resolution	50mW	80mW	120mW
	Precision	0.3%+0.3%FS		
	-	ower protection (OPP), over current protection	n (OCP), over voltage protection (OVP), over	r temperature protection (OTP), reverse
Short circuit f		r voltage protection (UVP)		
		N, Handler port, USB Host, USB Device, para	allel interface	
Power supply		, Handler port, OOD Host, OOD Device, para	iller iriteriace	
Power supply		110/220VAC		
Power freque		50/60Hz		
Safety certific		CE		
Environment				
Operating ten	· · · · ·	0-40°C		
Storage temp		-20-80°C		
Dimensions a				
Dimensions (215*129*479mm		
Weight (kg)	,	7.8kg215*129*479mm	9.1kg430*129*479mm	8.7kg-430*129*479mm
		-	-	-

Standard Accessories

YT3008 Test Cable

III. TH8300 Series Programmable DC Electronic Load

Features

- 5-module/2-module frame
- Unit maximum power 2500W, maximum current 400A
- Module maximum power 500W, maximum current 80A, and maximum voltage 600V
- High resolution: 0.1mV/10µA
- Up to 50kHz dynamic frequency
- Up to 500kHz sampling speed
- 12 advanced test functions
- Modular design, support each module to operate independently
- Modular 40 files storge
- One single machine can support up to five modules in parallel and support up to ten channels
- Connect via CAN interface, support up to four complete machines online
- 24-bit 2.8-inch color LCD display
- Chinese and English operation interface
- Smart fan system
- Support power-on hold function
- Support timing function
- Electrical isolation, external input and output
- Support over current protection (OCP), over voltage protection(OVP), over power protection (OPP), over temperature protection(OTP), reverse polarity protection (REV), low voltage protection (LVP)

Application

■ Power supply

Chargers, switching power supplies, communication power supplies, LED drivers, mobile phone batteries, power banks, etc.

■ New energy

Solar cells, new power cars, electric bicycles

■ Electronic power components

Fuse/connector/relay/sensor

Automation equipment integration test

TH8300

TH8310

	USB HOST					
standard						

 $\label{eq:def:Dimension} Dimension(mm): 477mm(W)x177mm(H)x590mm(D) \ \ Weight: 15kg \\ Dimension(mm): 142mm(W)x85.5mm(H)x550mm(D) \ \ Weight: 4.2kg \\ \\$

Specifical												
Main machine		TH8300 Fran	ne				TH8310 Fra	me				
Supported modu	les	5					2					
Interface		RS232, USB	HOST, USB	DEVICE, LA	N, GPIB, SY	STEM I/O, C	AN					
Storage		40 groups (5	0 groups of	status memo	ry)							
Power supply		90-130VAC or 175-253VAC (47-63Hz)										
Power consumpt	ion	Less than 300VA										
	Operating temperature	0 degrees Co	elsius - 40 de	egrees Celsiu	IS							
T	Operating humidity	10%-90% (n	on-condensi	ng)								
Temperature and environment	Storage temperature	-20 degrees	Celsius -70	degrees Cels	ius							
environment	Altitude	Less than 20	00m									
	Pollution degree	Pollution deg	Pollution degree 2									
	Security Level	Safety Categ	jory II									
	Frame Size	480mm×177	mm×590mm	1			260mm×17	7mm×590m	ım			
Size and Weight	Frame Weight	15kg					11kg					
Module Model		TH8301- 80-20		TH8302- 80-40	TH8303- 80-60	TH8304- 80-80	TH8305- 80-80	TH8302- 600-10	TH8303- 600-15	TH8305- 600-30		
Input Power		100W×2	200W×2	200W×1	300W×1	400W×1	500W×1	200W×1	300W×1	500W×1		
Input Voltage		0-80V						0-600V				
Input Current		0-20A	0-20A	0-40A	0-60A	0-80A	0-80A	0-10A	0-15A	0-30A		
Minimum operati	na voltogo	0.5V@0.2A	0.5V@0.2A	0.5V@0.4A	0.5V@0.6A	0.4V@0.8A	0.4V@0.8A	2V@0.1A	2V@0.15A	2V@0.3A		
wiiriiriurii operati	ng voltage	0.5V@2A	0.5V@2A	0.5V@4A	0.4V@8A	0.4V@8A	2V@1A	2V@1.5A	2V@3A	2V@3A		
		0.5V@20A	0.5V@20A	0.5V@40A	0.4V@80A	0.4V@80A	2V@10A	2V@15A	2V@30A	2V@30A		
Standard Mode		Constant cur	rent (CC), co	onstant resist	ance (CR), c	onstant voltag	je (CV), cons	tant power	(CP)			
Constant	Range/Resolution	6V/0.1mV, 16	6V/1mV, 80V	//1mV				80V/1mV, 1	150V/10mV, 6	600V/10mV		
voltage (CV)	Accuracy	0.05%+0.1%	FS									

III. TH8300 Series Programmable DC Electronic Load

	Range	0-0.2A	0-0.2A	0-0.4A	0-0.6A	0-0.8A	0-0.8A	0-0.1A	0-0.15A	0-0.3A
	Resolution	0.01mA	0.01mA	0.01mA	0.01mA	0.01mA	0.01mA	0.005mA	0.005mA	0.005mA
Constant	Range	0-2A	0-2A	0-4A	0-6A	0-8A	0-8A	0-1A	0-1.5A	0-3A
current (CC)	Resolution	0.1mA	0.1mA	0.1mA	0.1mA	0.1mA	0.1mA	0.05mA	0.05mA	0.05mA
· · · · · · · · · · · · · · · · · · ·	Range	0-20A	0-20A	0-40A	0-60A	0-80A	0-80A	0-10A	0-15A	0-30A
	Resolution	1mA	1mA	1mA	1mA	1mA	1mA	0.5mA	0.5mA	0.5mA
	Accuracy	0.1%+0.1%F	S	1	1					
		0.04-80Ω (100W/6V)	0.04-80Ω (100W/6V)	0.02-40Ω (200W/6V)	0.015-30Ω (300W/6V)	0.01-20Ω (400W/6V)	0.01-20Ω (400W/6V)	0.2-400Ω (200W/80V)	0.133-270Ω (300W/80V)	
Constant	Range	1.44-2.9kΩ (100W/16V)	1.44-2.9kΩ (100W/16V)	0.8-1.5kΩ (200W/16V)	0.3-600Ω (300W/16V)	0.36-720Ω (400W/16V)	0.36-720Ω (400W/16V)	3-6kΩ (200W/150V)	1.92-4kΩ (300W/10V)	1.92-4kΩ (500W/150)
resistance (CR)		5.76-12kΩ	5.76-12kΩ	3-6k Ω	1.5-3kΩ (300W/80V)	1.45-2.9kΩ	1.45-2.9kΩ	300-300kΩ	208-200kΩ	208-200k
	Resolution	0.1Ω	(10000/000)	(200VV/00V)	(300007000)	(40000/000)	(40000/000)	(2000070000)	(30000700007)	(300000
	Accuracy	1%								
	•	0-2W	0-4W	0-4W	0-6W	0-8W	0-10W	0-4W	0-6W	0-10W
	Range Resolution	1mW	2mW	2mW	3mW	4mW	5mW	2mW	3mW	5mW
		0-10w	0-20w	0-20w	0-30w	0-40w	0-50w	0-20W	0-30w	0-50w
Constant power	Range									
CP)	Resolution	10mW	20mW	20mW	30mW	40mW	50mW	20mW	30mW	50mW
	Range	0-100w	0-200w	0-200w	0-300w	0-400w	0-500w	0-200W	0-300w	0-500w
	Resolution	100mW	200mW	200mW	300mW	400mW	500mW	200mW	300mW	500mW
	Accuracy	1%								
Advanced mode				equency scar st, list test, au	n, CR-LED test tomatic test	st, battery tes	t, time test, I	MPPT test, (OCPT test, C	VPT test,
Dynamic mode-c mode								I		
Minimum working	<u> </u>	1.5V						3V		
	Range	100Hz-50kH		Hz						
requency	Accuracy	1μs/1ms+10								
	Duty cycle	1-99% (Minir	mum rise tim	e controlled)						
	Range	0.04A/ms- 0.02A/µs	0.04A/ms- 0.02A/μs	0.08A/ms- 0.04A/µs	0.12A/ms- 0.06A/μs	0.16A/ms- 0.08A/μs	0.16A/ms- 0.08A/μs	0.02A/ms- 0.01A/µs	0.03A/ms- 0.015A/μs	0.06A/ms 0.03A/μs
F	Resolution	0.01mA/μs	l	1	1	1	1	0.005mA /μ		l
	Range	0.4A/ms- 0.2A/μs	0.4A/ms- 0.2A/μs	0.8A/ms- 0.4A/μs	1.2A/ms- 0.6A/μs	1.6A/ms- 0.8A/μs	1.6A/ms- 0.8A/μs	0.2A/ms- 0.1A/µs	0.3A/ms- 0.15A/μs	0.6A/ms- 0.3A/μs
Slope	Resolution	0.1mA/µs 4A/ms- 2A/	44/ 04/	8A/ms- 4A/	404/ 04/	404/	16A/ms-	0.05mA/μs	0.4/	6A/ms- 3
	Range	μ s	4A/ms- 2A/ μs	μs	12A/ms- 6A/ μs	8A/μs	8A/µs	2A/ms- 1A/μs	3A/ms- 1.5A/μs	μs
	Resolution	1mA/μs						0.5mA/μs		
	Accuracy	10%±20μs								
		10μs								
Measurement (re								T.		
	Range/Resolution	i						0-80V/1.5m	١V	
	Accuracy	0.025%+0.0						l		
/oltage	Range/Resolution	0-16V/0.3m\						0-150V2.7r	nV	
o .	Accuracy	0.025%+0.0						00001110	,	
	Range/Resolution	0-80V/1.4m\						0-600V/10.	/mV	
	Accuracy	0.01%+0.02			I	I				
	Range	0-0.2A	0-0.2A	0-0.4A	0-0.6A	0-0.8A	0-0.8A	0-0.1A	0-0.15A	0-0.3A
	Resolution	0.004mA	0.004mA	0.008mA	0.012mA	0.016mA	0.016mA	0.002mA	0.003mA	0.003mA
	Range	0-2A	0-2A	0-4A	0-6A	0-8A	0-8A	0-1A	0-1.5A	0-3A
Current	Resolution	0.04mA	0.04mA	0.08mA	0.12mA	0.16mA	0.16mA	0.02mA	0.03mA	0.03mA
	Range	0-20A	0-20A	0-40A	0-60A	0-80A	0-80A	0-10A	0-15A	0-30A
	Resolution	0.4mA	0.4mA	0.8mA	1.2mA	1.6mA	1.6mA	0.2mA	0.3mA	0.3mA
	Accuracy	0.05%+0.05	%FS							
		0-16W	0-30W	0-30W	0-30W	0-60W	0-60W	0-60W	0-90W	0-180W
Dower	Range	0-30W	0-60W	0-60W	0-60W	0-60W	0-60W	0-200W	0-300W	0-500W
		0-100W	0-200W	0-200W	0-300W	0-400W	0-500W	0-200W	0-300W	0-500W
owei	Accuracy	0. 1%+0.1%	FS							
-owei	Accuracy			0) (D) 0		ion (OCP) O	er nower pro	ntection (OP	P) Over tem	perature
Protection function	,	Over voltage protection (C	. ,	OVP) Over ci	urrent protect	ion (OCF) Ov	or portor pro	10) 11011001	. , 0	
	on	_	. ,	OVP) Over ci	urrent protect	ion (oor) ov	or power pro	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ,	
Protection function	on	_	TP)		urrent protect		or power pro		. , 6	
Protection function	on otion	protection (C	TP)		urrent protect		or power pro	7.00.1011 (01	. , , , , , , , , , , , , , , , , , , ,	

III. TH8400 Series Programmable DC Electronic Load

Features

- High resolution:1mV/0.1mA
- Up to 25kHz dynamic frequency
- Up to 500kHz sampling speed
- Low ripple and low noise
- Voltage/current ripple, peak, peak-valley measurement
- Voltage/current waveform display
- 11 kinds of operation and measurement functions
- 4.3-inch 24-color 480X272 TFT LCD screen, Chinese and English interface
- Numeric keyboard and knob operation
- Screen copy function
- Remote compensation function
- Intelligent fan control
- Protection mode: over voltage, over current, over power
- Support U disk file storage and loading, program upgrade
- Software control and detection through computer
- Equipped with HANDLER interface for automatic matching
- SCPI command protocol

 $Shelf \ dimension(mm): 215(W) \times 88(H) \times 390(D) \\ Exterior \ dimension(mm): 236(W) \times 111(H) \times 454(D)$

Weight:3kg(TH8401/TH8411), 4.8kg(TH8402A/TH8402/TH8412)

Application

■ Power supply

Chargers, switching power supplies, communication power supplies, LED drivers, mobile phone batteries, power banks, etc.

■ New energy

Solar cells, new power cars, electric bicycles

- Electronic power components
- Fuse/connector/relay/sensor
- Automation equipment integration test

Specifications

Model		T⊢	18401	TI	H8402	TH	8402A	TH	H8403	TH	18404	TI	H8405	TH	18411	TH	18412
	Power	175W		350W		350W		1000W		1500W		2000W		175W		350W	
	Voltage	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~50V	0~500V	0~50V	0~500V
	Current	0~3A	0~30A	0~3A	0~30A	0~6A	0~60A	0~12A	0~120A	0~18A	0~180A	0~24A	0~240A	0~1.5A	0~15A	0~3A	0~30A
Rated value	Minimum operating voltage	1.5V@30)A	1.2V@30	DA .	1.5V@60)A	1.5V@12	20A	1.5V@18	0A	1.5V@24	40A	3V@15A		3V@30A	
	Minimum rise time	20µS															
01/	Range	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~50V	0~500V	0~50V	0~500V
CV mode	Resolution	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV
mode	Accuracy	0.05%+0	.05%FS														
	Range	0~3A	0~30A	0~3A	0~30A	0~6A	0~60A	0~12A	0~120A	0~18A	0~180A	0~24A	0~240A	0~1.5A	0~15A	0~3A	0~30A
CC mode	Resolution	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA	0.1mA	1 mA	0.1mA	1mA	0.1mA	1mA
mode	Accuracy	0.05%+0	.05%FS	•	•	•	•			•	•			•		•	
	Range	0.05Ω~50	OkΩ	0.05Ω~5	0kΩ	0.05Ω~25	5kΩ	0.02Ω~50	0kΩ	0.02Ω~50)kΩ	0.01Ω~2	5kΩ	0.2Ω~50k	Ω	0.1Ω~50	kΩ
CR	Resolution	0.05Ω						0.05Ω						0.1Ω			
mode	Accuracy	1%						1%									
	Range	0~175W		0~350W		0~350W		0~1000W	V	0~1500w		0~2000w	/	0~175W		0~350w	
CP .	Resolution	10mW		10mW		10mW		10mW		10mW		10mW		10mW		10mW	
mode	Accuracy	0.5%+0.1	1%FS														
	Range	20 µs ~ 6	30S														
Dynamic	Resolution	2 µs															
mode	Accuracy	2µS+100	maal														
	Rise rate	0.6A/ms^	• •	0.6A/ms	~1.5A/µS	1.2A/ms~	-3A/uS	2.4A/ms~	~6A/uS	3.6A/ms~	9A/uS	4.8A/ms	~12A/uS	0.3A/ms~	0.75A/us	0.6A/ms	~1 5A/us
	Range	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~50V	0~500V	0~50V	0~500V
voltage	Resolution	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV
measurement	Accuracy	0.08%+0		IIIIV	101114	11111	101117	IIIIV	101114	11111	TOTTIV	IIIIV	101114	IIIIV	101114	11111	101114
	Range	0~3A	0~30A	0~3A	0~30A	0~3A	0~30A	0~12A	0~120A	0~18A	0~180A	0~24A	0~240A	0~1.5A	0~15A	0~3A	0~30A
current	Resolution	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA	0.1mA	1mA
measurement	Accuracy	0.08%+0		U. IIIIA	IIIIA	U. IIIIA	IIIIA	U. IIIIA	IIIIA	U. IIIIA	IIIIA	U. IIIIA	IIIIA	U. IIIIA	IIIIA	U. IIIIA	IIIIA
	-	0.08%+0 0~15V	.05%FS 0~150V	0~15V	150V	0~15V	150V	0~15V	0~150V	0~15V	0~150V	0~15V	0~150V	0~50V	0~500V	0~50V	0~500V
	Range		U~150V	0~15V	1500	0~15V	1507	U~15V	0~150V	0~15V	0~150V	U~15V	U~150V	0~50V	0~500V	0~30V	0~300V
ripple	Bandwidth	250kHz															
	Accuracy	0.1%								(0.00)							
Protection fund	ction			ction (OVE	Over curr	ent protec	tion (OCP)	Over power	er protectio	n (OPP)							
Storage		internal:	40 groups														
Specification				01 15 "	. ,	\ a.= -								01 15 1:	. , .		
Volume (mm)	(W*H*D)	215×88×	390		mension(mr dimension(,		430mmx	88mmx529n	nm					ension(mm) mension(m		
Weight		3kg		4.8kg		4.8kg		13kg		15.5kg		18kg		3kg		4.8kg	
												5					
Power		Supply v	oltage: 220), Supply f		50Hz/60Hz		Power cons		:50VA	reng		3		- 3	

Standard Accessories

III. TH3300 Series Digital Power Meter

Features

- 24-bit color 4.3-inch 480 x 272 color LCD screen, English and Chinese interface
- PLL (phase-locked loop) technology, faster measurement speed
- AC and DC test
- Wide current measurement range
- Input signal waveform display: Voltage and current can be displayed simultaneously or separately
- Higher measurement accuracy and faster data update rate
- Rich display mode:
 Traditional four-window display
 Full parameter full screen display
- Higher frequency test range and wider frequency response
- Multiple harmonic analysis display modes: List mode, Histogram
- Data Record Function

Application

Appliances

TV, refrigerator, air conditioner, washing machines, vacuum cleaners, water heaters and other power efficiency testing

Electric machinery, motor, transformer, charger, power and other power test

RS232	USB HOST	USB DEVICE	HANDLER	RS485
standard	standard	standard	standard	option

Rack mount (mm):215mm(W)x88mm(H)x335mm(D) Dimension (mm):235mm(W)x105mm(H)x360mm(D) Net weight: 3.6kg

Lighting

Lighting appliances, LED lamps and other power test

■ New energy

Photovoltaic modules, electric vehicles, wind power and other power test

Model		TH3311	TH3312	TH3321	TH3331
Display			4	.3-inch color TFT display	
Connection m	ode			Single phase	
	AC	\checkmark	✓	☑	
	DC	✓	✓	☑	
	Precise	✓	✓	Ø	
Basic features	Micro current			Ø	
	Wide current				
	Harmonic Analysis		✓	☑	abla
	Power test		✓	☑	
	Data	 ✓	 ✓	☑	☑
Display mode	Oscillogram	☑	☑	☑	☑
1 7	Harmonic histogram		 ✓	Ø	
Basic accurac	cy .		0.15	% reading + 0.2% range +1 digit	
\/=lt====	Range		5	5V-75V/150V/300V/600V	
Voltage	Resolution			0.01V	
Current	Range	10mA/30mA/100mA/4	00mA/1.5A/5A/20A	1mA/3mA/10mA/40mA/150mA/500 mA/2A	10mA/30mA/100mA/400mA /1A/3A/10A/40A
	Minimum resolution	1m	A	1uA	1mA
Power	Range	0.01W-	12kW	0.01mW-1.2kW,6-class energy efficiency	0.01W-24kW
rowei	Minimum resolution	0.01	W	0.001mW	0.01W
Frequency	Range	Fundamental frequen	cy range: DC/45Hz	-400Hz, Bandwidth : 21kHz, filter	5kHz Minimum resolution
Trequency	Minimum resolution				
Power factor	Range	0.001-1.000			
	Minimum resolution	0.001			
Harmonic Ana	lysis		\pm (5% of reading +	0.3% of range)	
	Range	0-99999kWh			
Power integral	Resolution	0.001Wh			
	Accuracy	\pm (0.2% of reading + 0	0.3% of range)		
	Range	0-9999:59:59			
Power timing	Resolution	1s			
	Accuracy	±0.05%			
Measurement	speed		3 times / sec, harm	onic function on: 2 times / sec	
Lock function		Data lock			
Range mode		AUTO / MAN			
Input impedar	nce	≥ 1MΩ (all voltage pr			
Comparator		limit sound, light alarn	า		
Output		Relay output			
Communication	on Interface	RS232C/RS485, US		OST, HANDLER	
Storage		USB waveforms, set f	iles		
			71	_	

III. TH3400 series multi-channel digital power meter

Features

- Channel combination: optional 3/4 channelsAC and DC test
- High stability and consistency: adopt phase-locked loop frequency multiplication synchronization control and power synchronization setting
 High resolution display: 7-inch 800×600 resolution touch screen, support mouse operation
- Display screenshot function
- Broadband input: 45Hz-420Hz, suitable for most power systems on the market Embedded system: equipped with embedded operating system, human-computer interaction is more flexible and friendly
- Comparison function: provide comparison output of 8 comparison
- channels, and the output mode is programmable

 Harmonic analysis: controllable analysis parameters, providing list display and bar graph display

- Waveform display: input signal waveform/integrated power waveform
 Vector display: vector display of input signal
 Flexible energy integration control: provide continuous time control and manual control the running and stopping of energy integration
 File storage: relatively powerful file system, compatible with most U disks
 Protocol: SCPI instruction set and MODBUS instruction analysis

Shelf volume: 215mm(W)x132mm(H)x441mm(D) Dimensions: 236mm(W)x154mm(H)x475.5mm(D)

Net weight: 8.1kg

Application

- Power supply: AC power supply, DC power supply, linear power supply, switching power supply, inverter
- New energy: solar batteries, new power cars, electric bicycles

- Test and analysis of electrical parameters of electrical equipment such as household appliances, industrial electrical appliances, and various electronic loads
- Automation equipment integration test

Model			TH3/121			TH3422		
Number of	channels	TH3421 TH3422 nels 4 4						
Display	CHAIHEIS		<u> </u>	00v480) color :	4 FT resistive touch screen			
Wiring mod	e	One-phase two- wire (1P2W)	One-phase three- wire (1P3W)	Three-phase wire (3P3)	three-	Three-phase four-wire (3P4W)	Three-voltage three- current (3V3A)	
	AC	WIIC (11 ZVV)	Wile (11 5W) ☑	Wile (or o		(31 4 1 1	current (5 v 5A)	
	DC		□			✓		
Basic	Precision type		<u> </u>			<u> </u>		
features	Micro current					M		
roataroo	Harmonic analysis		<u> </u>			<u></u>		
	Electric energy test		M			M		
	Data		lacksquare			<u>√</u>		
	Integration data		∀			⋈		
Display	Waveform graph		✓			▼		
mode	Vector analysis		∀			✓		
	Histogram		I			M		
Basic accur				15% reading +	0.2% rs			
Dasic accui	Range					impedance: 3MΩ)		
Voltage	Resolution		34-734/13		.01V	inpedance: Sivis27		
	Range		400mA(Input impeda	nce: 200mΩ)	1mA/3	mA/10mA/40mA(Input i		
Current	<u> </u>	1.5A/5A/20A(Inp	ut impedance: 4mg	Ω)	150mA	V500mA/2A (nput imped	ance: 40mΩ)	
	Minimum resolution		10μΑ			1μΑ		
Power	Range		5mW-12kW			0.5mW-1.2k		
	Minimum resolution		0.01mW			0.001mW		
Frequency	Range		quency range: DC/	45Hz-420Hz,	Bandw	idth: 21kHz, filter 5kHz	Minimum resolution	
	Minimum resolution	0.01Hz						
Power	Range	-1.000-1.000						
factor	Minimum resolution	0.001	201					
Harmonic a		± (5% reading + 0	.3% range)					
Energy	Range	0-99999kWh						
integration	Resolution	0.001Wh	0.00(
	Accuracy	±(0.2% reading +	0.3% range)					
Energy	Range	0-9999: 59: 59						
timing	Resolution	1s						
	Accuracy	±0.05%	. ,			,		
Measuring		,	armonic/waveform f	unction is ON:	4 times	5/S		
Lock function		Data lock						
Range met		Auto/Manual	()					
Input imped		≥3MΩ(Voltage inp						
Comparato	r	Over-limit sound a						
Output	At a section for the second		nmable relay output		V.ED. '	WEI/	F7004 drive materials (1)	
	ation interface			oi, LAN, HANL	JLEK, V	VIFI(support RTL8192 and M	1/601 drive network card)	
Storage		USB waveforms, s	setting files					

III. TH343X TH344X series multi-channel digital power meter

Features

- Channel: 1/3/4
- AC/DC: Support AC and DC input test
- Soft start: using soft power switch design
- High-resolution display: 7 inches, 800×600 resolution, capacitive touch screen, support mouse operation
- Provide screenshot operation
- Broadband input: 0.1Hz-100kHz, suitable for most power systems on the market
- Embedded system: equipped with embedded operating system, the human-computer interaction is more flexible and friendly
- Comparison function: Provides 8 comparison channels for comparison output, and the output mode is programmable
- Harmonic analysis: analysis parameters are controllable, and list display and bar graph display are provided
- Waveform display: Provides basic input signal waveform display function and integrated power waveform display
- Vector display: Provide a vector display of the input signal
- Flexible energy integral control: provide continuous time control and manual control of energy integral run and stop operations
- File storage: a relatively powerful file system, compatible with most U disks (FAT format)
- Abundant interfaces: USB HOST, USB DEVICE, LAN, HANDLER, RS232/RS485 (choose one of two)
- Communication protocol: support SCPI command set and ModBus command parsing

Shelf volume: 215mm(W)x132mm(H)x441mm(D)
Dimensions: 236mm(W)x154mm(H)x475.5mm(D)

Net weight: 8.1kg

Application

- Motors, transformers
- Electronic production design
- Lighting
- Aerospace and military industry
- Network communication
- Audio and video equipment
- Monitoring equipment
- Source class device

Test and analysis of electrical parameters of AC power supply, DC power supply, linear power supply, switching power supply, and inverter and other source output equipment

Load equipment

Test and analysis of electrical parameters of various types of household appliances, industrial appliances, various electronic loads and other electrical equipment

Model		TH3431	TH3433	TH3434	TH3441	TH3443	TH3444
Number Of Char	nnels	1	3	4	1	3	4
Display		7-Inch (800x480) Co	olor TFT Resistive Touc	h Screen			
			One-Phase Two-Wire	(1P2W)		One-Phase Two-Wire	(1P2W)
			One-Phase Three-Wir	e (1P3W)		One-Phase Three-Wi	re (1P3W)
Wiring Mode		One-Phase Two-	Three-Phase Three-W	/ire (3P3W)	One-Phase Two-	Three-Phase Thr (3P3W)	ree-Wire
willing Wode		Wire (1P2W)	Three-Phase Four-Wi	re (3P4W)	Wire (1P2W)	Three-Phase Fo (3P4W)	ur-Wire
			Three-Voltage Thre (3V3A)	ee- Current		Three-Voltage Three (3V3A)	e- Current
	AC	Υ			Υ		
	DC	Υ			Υ		
Basic Features	Precision Type	Υ			Υ		
Dasic i Catales	Micro Current	Υ					
	Harmonic Analysis	Υ			Υ		
	Electric Energy Test				Υ		
	Data	Υ			Υ		
	Integration Data	Υ			Υ		
Display Mode	Waveform Graph	Υ			Υ		
	Vector Analysis	Υ			Υ		
	Histogram	Υ			Υ		
Basic Accuracy	,						
Voltage	Basic Accuracy	0.15% Reading + 0.	2% Range				
Voltage	Resolution	0.001V					
Current	Basic Accuracy	± (0.15% Reading +	0.1% Range)				
Ouron	Resolution	0.1mA			1mA		
Frequency Rang	je	Voltage/Current Acc	,				
DC		± (0.1% Reading +0	.2% Range)				
0.1Hz ≤ Freq < 4		± (0.1% Reading +0					
45Hz ≤ Freq < 6		± (0.1% Reading +0	<u> </u>				
66Hz ≤ Freq < 1	khz	± (0.1% Reading +0	.2% Range)				

III. TH343X TH344X series multi-channel digital power meter

1khz ≤ Freq < 10khz ± ((0.07*Freq) % Reading +0.3% Range)				
10khz ≤ Freq ≤ 100khz		± (0.5% Reading +0.5% Range) ± [0.04*(Freq - 10k)] % Reading		
Input				
	Scope	1V - 600V		
Voltage	Range	15V/30V/60V/150V/300V/600V		
	Minimum Resolution	0.001V		
	Input Impedance	2ΜΩ		
	input impedance	1000V (1S)		
	Allowed Max Input	700V(Continuous)		
Current	Scope	0.01mA - 2A		
	Range	0.5mA/1mA/2mA/5mA/10mA/20mA	5mA/10mA/20mA/50mA/100mA/200mA	
	Input Impedance	40	400mΩ	
	Range	0.05A/0.1A/0.2A/0.5A/1A/2A	0.5A/1A/2A/5A/10A/20A	
	Input Impedance	40mΩ	4mΩ	
	Minimum			
	Resolution	0.1uA	1uA	
	Allowed Max Input	3A(1S)	30A(1S)	
	, mowed wax input	2A(Continuous)	20A(Continuous)	
Power	Range	0.01mW - 1.2kW	0.1mW - 12kW	
	Minimum Resolution	0.001mW	0.01mW	
	Range	Fundamental Frequency Range: DC/0.1Hz - 100kHz, Filter 500Hz		
Frequency	Minimum			
	Resolution	0.01Hz		
Power Factor	Range	- 1.000 - 1.000		
	Minimum Resolution	0.001		
Harmonic	Range	10Hz-1.2kHz		
Analysis	Accuracy	± (5% Reading +0.3% Range)		
Energy Integration	Range	0 - 99999kWh		
	Resolution	0.001Wh		
	Accuracy	± (0.2% Reading +0.3% Range)		
Energy Timing	Range	0 - 9999: 59: 59		
	Resolution	1s		
	Accuracy	± 0.05%		
Update Rate		Optional 0.1s/0.25s/0.5s/1s/2s/10s/20s		
Lock Function		Data Lock		
Range Method		Auto/Manual		
Input Impedance		≥ 2MΩ (Voltage Input)		
Comparator		Over-Limit Sound And Light Alarm		
Output		8 Channel Programmable Relay Output		
	ssistance Function	T		
Data Buffer Storage Function		The Test Results Are Stored In A U Disk, And Statistical Analysis Can Be Performed On The PC Side		
Save/Load Function		The Saving Of Setting Data Is Divided Into Measurement Parameter Setting And System Parameter Setting		
Keyboard Lock		Front Panel Keys And Touch Screen Operations Can Be Locked To Effectively Prevent Misoperation		
Communication Interface	Serial Communication	RS232C/RS485 Optional		
	USB HOST	Universal Serial Bus Socket, Type A; FAT16/FAT32 Format. U Disk Storage Or Designated Wireless Network Card (WIFI Supports RTL8192 And MT7601) And Other Equipment Support		
	USB DEVICE	Universal Serial Bus Socket, Small Type B (4 Contact Positions); Compatible With USBTMC - USB488 And USB2.0, Female Connector For Connecting External Controllers. Optional CDC Mode Or TMC Mode.		
	LAN	10/100baset Ethernet, 8 Pins, Stable Communication.		
	HANDLER	8 Channel Programmable Relay Output		
Storage		USB Waveform, Setting File		
Power Supply	er Supply AC220V± 10%, 50/60Hz± 5%, Soft Power Switch		ch	
Size W*H*D Working Size		236mm*154mm*475.5mm		
	Shelf Size 215mm*132mm*441mm			
Weight		8.1kg		

IV. TH9110/A Hipot Tester

Features

- High power: AC 5kV / 100mA / 500VA output
- High security:

High-voltage floating output design, in line with the safety requirements of EU standards EN50191 (only TH9110) Electric shock protection function

- High resolution: 7 inch 800 × 480 dots, TFT-LCD display
- Brand-new operation interface, Chinese and English menu
- ARC detection function
- Contact check function (OSC)
- Breakdown voltage test function
- One-key screen capture function
- One-key recording function
- Rear panel output function to facilitate automated production line testing
- Storage: 100 files, up to 50 steps per file

Application

■ Winding devices

Transformers, generators/motors and other products needing high -power withstand voltage test and analysis, such as different types of motor stator, rotor and other high parasitic capacitance products

- Electronic components
- Capacitors, coils, cores, choke coils, filters and so on
- Electrical products

Household appliances, information products, audio-visual equipment, electric heating appliances, lighting equipment

RS232			HANDLER	LAN	GPIB
standard	standard	standard	standard	standard	option

TH9110/A

Dimension(mm): 430(W)×132(H)×500(D) Weight: 21kg

Non-electrical products

Withstand voltage and insulation resistance test for wire, non -woven fabric, insulation materials and so on

- New energy automobile
- Automated test system
- Medical equipment

Specifications

Model		TH9110	TH9110A		TH9111	TH9111A
Withstand voltage	test			,		
Output valtage	AC	0.05 - 5kV Loa	ad Variance: 1%	Accura	acy: 1% Resolution	ı: 2V
Output voltage	DC	0.05 - 6kV Loa	ad Variance: 1%	Accura	acy: 1% Resolution	n: 2V
Current test range	AC	0.001mA - 120mA(Vo 0.001mA - 100mA(Vo Accuracy: 1% R	ltage>4kV)		0.001mA - 40mA Accuracy: 1% Re	solution: 0.1μA
range	DC	0.0001mA - 25mA Resolution: 0.1 μA	Accuracy: 1%		0.0001mA - 20mA Accuracy: 1% Re	solution: 0.1 μA
Output power		500VA				
Insulation resistan	nce test					
Output Voltage		DC: 0.05 - 5kV R	esolution: 2V A	Accurac	cy: 1% of set value + 0	.1% full scale
Resistance test ra	inge	1MΩ-50.0GΩ F	Resolution: $0.1M\Omega$			
Discharge function	n	Automatic discharge after the end of the test				
ARC detection	AC	1mA - 20mA				
ARC detection	DC	1mA - 10mA				
Contact check fun	oction	OSC open and short: 600Hz, 0.1s				
Security features						
High voltage floati	ing output	Leakage current <3 m	nA		Leakage current <3 m/	4
Electric shock pro	tection	0.5mA ±0.25mA				
Other protection		Start protection, pane	l operation password _l	protect	ion	
Alarm indication		PASS: short tone, green light; FAIL: long tone, red light				
Memory		100 groups, 50 steps per group				
General paramete	ers					
Voltage rise time		0.1s — 999.9s				
Test time setting(A	AC/DC)	0.3s — 999s				
Voltage fall time		0.1s — 999.9s				
Waiting time (IR)		0.2s — 999.9s				
Time accuracy		±(1%+0.1s)				

Standard Accessories

TH90018 Withstand Voltage Test Cable(only TH9110)

IV. TH9120A/D Hipot Tester

Features

- High voltage: AC 10kV, DC 12kV
- Breakdown voltage test: AC can reach 10kV, DC can reach 12kV; Component voltage stepping (10V) and Normal stepping (divided according to test steps)
- High resolution: 7 inch 800 × 480 dots, TFT-LCD display
- Chinese and English menu operation interface
- ARC detection function
- OSC check function
- One-click screen capture function
- Rear panel output function for automatic test of production line
- Storage: 100 files, up to 50 steps per file
- Pin detection
- Insulation resistance can reach 50G

Application

■ High withstand voltage test

High-voltage optocouplers, high-voltage relays, high-voltage switches and other high-insulation devices

■ Electronic components

Capacitors, coils, cores, chokes, filters, etc.

■ Electrical products

Household appliances, information products, audio-visual equipment, electric heating appliances, lighting equipment

Dimension(mm):430mm(W)x132mm(H)x500mm(D) Weight: 21kg

■ Non-electrical products

Withstand voltage and insulation resistance test of wire, non-woven fabric, insulating material, etc.

- New energy vehicles
- Automatic test system

			TH9120A	TH9120D
Test mode			AC/OSC	DC/IR
Withstand voltage test				
		Voltage range	0.05-10.0kV	
	AC	Voltage waveform	50/60Hz ±0.1% Sine wave	
Output voltage		Output power	200VA(10.0kV 20mA)	
	DC	Voltage range		0.05-12.0kV
	DC	Output power		120VA(12.0kV 10mA)
Load change rate			±(1% set value + 10V) (rated power)	
Voltage resolution			2V	
Voltage accuracy			±(1% set value + 0.1% full scale)	
		Current range	0.001mA-20mA	
	AC	Current resolution	0.001mA	
		Current accuracy	0.100mA-2.999mA	
			±(1% reading + 0.5% full scale)	
Current test range			3.00mA-20.00 mA	
			±(1.5% reading + 0.5% full scale)	
		Current range		0.0001mA-10mA
	DC	Current resolution		0.1uA
		Current accuracy		±(1% reading + 0.5% full scale)
Maximum short circuit cu	rrent		40mA (AC test only)	
Fast discharge function				Automatic discharge after test (DCW)
Insulation resistance test				
Output voltage				DC:0.05-5.0kV
Voltage resolution				2V
Voltage accuracy				±(1% set value + 0.5% full scale)
Resistance test range				0.1ΜΩ– 50.0GΩ

IV. TH9120A/D Hipot Tester

Resistance test accuracy	Voltage≥0.5kV		$\begin{array}{c} 1M\Omega - 1G\Omega \\ \pm \ (3\% \ reading + 0.1\% \ full \ scale) \\ \\ 1G\Omega - 10G\Omega \\ \pm \ (7\% \ reading + 2\% \ full \ scale) \\ \\ 10G\Omega - 50G\Omega \\ \pm \ (10\% \ reading + 1\% \ full \ scale) \end{array}$			
	Voltage<500V		0.1MΩ-1GΩ ± (5% reading + 2% full scale)			
Arc detection						
December authors	AC	1.0mA-20.0mA				
Program setting	DC		1.0mA-10.0mA			
OSC open and short de	tection					
Sampling standard capa	acitance range	0.001—40nF				
Open circuit judgment ra	ange	10%—100%				
Short circuit judgment ra	ange	100%—500%				
Time setting						
Test time		0.3—999s, 0 means continuous te	0.3—999s, 0 means continuous test			
Rise time		0.1—999s, 0 means OFF	0.1—999s, 0 means OFF			
Fall time		0.1—999s, 0 means OFF	0.1—999s, 0 means OFF			
Waiting time		0.1—999s, 0 means OFF (DC with	0.1—999s, 0 means OFF (DC withstand voltage only)			
Safety protection function	on					
Shock protection		0.5mA ± 0.25mA Optional: ON or	0.5mA ± 0.25mA Optional: ON or OFF			
Start protection (Interloc	ck)	When the pin is connected with low terminal, high voltage output is allowed.				
Panel operation protecti	on	Key lock, password				
Alarm indication		PASS: short sound, green light; FAIL: long sound, red light				
Storage and interface						
Internal memory		100 files can be stored and 50 ste	100 files can be stored and 50 steps can be edited in each file			
Standard interface		RS232, USB DEVICE, USB HO	RS232, USB DEVICE, USB HOST, LAN, HANDLER			
Optional interface		GPIB	GPIB			
Ambient temperature ar	nd humidity					
Parameter comparison	temperature	18℃~28℃, Humidity: 30%~70	%RH			
Normal working tempera	ature	0°C~45°C,Humidity: 20%~90%	SRH			
Storage environment te	mperature	-10℃~55℃,Humidity:< 80%RH				
General specification						
Power supply		100V~240VAC, 47Hz~63Hz				
Power		No load:< 100W Rated power:30	0W			
Volume		430mm (W) x 132mm (H) x 50	00mm (D)			
Weight		21kg				

Standard Accessories

TH90003R/B Withstand Voltage Test Cable
TH90015 Withstand Voltage Test Cable

IV. TH9130 Series Multifunction Safety Compliance Analyzer

Features

- 7-inch capacitive touch screen, 800×480 resolution Linux operating system
- Seven-in-one comprehensive test system with the following functions:
- 1) AC withstand voltage test
- 2) DC withstand voltage test
- 3) Insulation resistance test
- 4) Ground bond test
- 5) Continuity test
- 6) Leakage current test
- 7) Electrical performance test
- 500VA power AC withstand voltage design
- Maximum voltage 5kV for Insulation resistance test
- Leakage current supports a variety of human body impedance simulation resistance (MD)
- 500VA high-power AC power output (only TH9130, TH9131 this function is optional)
- Open/short circuit detection OSC
- ARC detection function
- Crash voltage test function
- Single screen display test mode, time, voltage, current, resistance value, test steps
- List display function: Simultaneously display the test results of multi-step settings and sequential execution
- Storage: 100 files, 50 steps/file

Dimension(mm):430mm(W)x132mm(H)x550mm(D) Weight: 40kg

Application

 Comprehensive electrical performance test and analysis of household appliances

Comprehensive test and analysis of lighting appliances Motor comprehensive analysis test

Test and analysis of high-power electrical appliances Comprehensive test and analysis of electronic components Medical electrical comprehensive test analysis

Model				TH9130	TH9131	TH9130A	TH9131A		
Withstand Voltag	ge Test								
		Range		0.05 - 5.0kV					
	AC	Waveform		50/60Hz±0.1% Sine Wave					
2		Oputput Po	wer	500VA (5.0kV/100mA)	200VA	500VA	200VA		
	DC	Range		0.05 - 6.0kV					
Outout Voltage	DC	Oputput Po	ower	150VA (6.0kV/25mA)	120VA	150VA	120VA		
	Load Chan	ge Rate		±(1% set value+10V) (Rated power)					
	Voltage Re	solution		2V					
	Voltage Ac	curacy		±(1% set value+5V)					
		Range	V≤4kV	0.001mA - 120mA	0.001mA - 40mA	0.001mA - 120mA	0.001mA - 40mA		
		Range	V>4kV	0.001mA - 100mA	0.001mA - 40mA	0.001mA - 100mA	0.001mA - 40mA		
Α	AC	Resolution		0.001mA					
		Accuracy	120mA	0.1mA-120.0mA ± (1% Reading +0.6mA)					
			30mA	0.01mA-29.99mA ± (1% Reading +0.15mA)					
Output Current			3mA	0.001mA-2.999mA ± (1% Reading +0.015mA)					
Output Current		Range	V≥1.5kV	0.0001mA - 25mA	0.0001mA - 12mA	0.0001mA - 25mA	0.0001mA - 20mA		
			V<1.5kV	0.0001mA - 20mA	0.0001mA - 12mA	0.0001mA - 20mA	0.0001mA - 10mA		
	DC	Resolution	'	0.1μΑ					
			25mA	0.01mA-25.00mA ± (1% Reading +0.12mA)				
		Accuracy	3mA	0.001mA-2.999mA ± (1% Reading +0.015mA	4)				
			5.1μ A	0.1μA-299.9μA ± (1% Reading +1.5μA)					
	Testing time	е		0.3 - 999s, 0 means continuous testing					
Time Setting	Rise Time/	Fall time		0.1 - 999s, 0 means off	0.1 - 999s, 0 means off				
	Waiting tim	е		0.1 - 999s, 0 means off (only DC withstand volta	0.1 - 999s, 0 means off (only DC withstand voltage)				
ARC Detection	AC			1.0mA - 20.0mA	1.0mA - 20.0mA	1.0mA - 20.0mA	1.0mA - 20.0mA		
VIVO DEIECTION	DC			1.0mA - 10.0mA					

IV. TH9130 Series Multifunction Safety Compliance Analyzer

Maximum short circuit current (AC test)		200mA	80mA	200mA	80mA		
Quick discharge function		Automatic discharge after test (DCW)					
ance Test							
Output			DC:0.05 - 5.0kV				
•							
			- '				
Test Range			0.1MΩ - 50.0GΩ				
		1M Ω - 1G Ω	±(3% Reading +1M)				
	V≥500V	1G Ω - 10G Ω	±(7% Reading +0.2G)				
Accuracy		10G Ω - 50G Ω	±(10% Reading +0.5G)				
	V<500V	1MΩ - 1 G Ω	±(5% Reading +100V/Vs*10M)				
Testing time			,				
			<u> </u>				
Waiting time	9		0.1 - 999s, 0 means off				
function			Automatic discharge after test				
l Test							
Range			1.00 - 40.00A				
Resolution			0.01A				
			- 1				
Resolution			0.01V				
Accuracy			±(2% set value +3 Digit)				
			50/60Hz±0.1%				
n			±(1% Output Value+0.02A)				
	1.00 - 3.00A		0 - 600mΩ± (3% Reading +3 Digit)				
			0 - 600mΩ± (2% Reading +2 Digit)				
	,						
, 100u.uoy							
	30.01 - 40.0	0A	0 - 150mΩ± (2% Reading +2 Digit)				
			0.5 - 999s, 0 means continuous testing				
0.0001A - 0	.1A		0.00 - 10000Ω				
0 - 10000			+ (1% Reading +3 Digi)				
	100		<u> </u>				
1001 - 1000	1022						
			0.3 - 999s, 0 means continuous testing				
			0.0 - 277 OV				
Accuracy			± (1.5% Reading +2 Digit) (30 - 277V)				
Range			0.00 - 16.00A				
Range	Resolution		0.01A				
Resolution			± (2% Reading +2 Digit)				
Resolution Accuracy			<u> </u>				
Resolution Accuracy Range			0 - 4500W				
Resolution Accuracy			0 - 4500W 1W				
Resolution Accuracy Range Resolution			0 - 4500W				
Resolution Accuracy Range Resolution Accuracy			0 - 4500W 1W ± (5% Reading +3W) 0.000 - 1.000 0.001				
Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy			0 - 4500W 1W ± (5% Reading +3W) 0.000 - 1.000 0.001 ± (8% Reading +2 Digit)				
Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range			0 - 4500W 1W ± (5% Reading +3W) 0.000 - 1.000 0.001 ± (8% Reading +2 Digit) 0.00 - 10.00mA				
Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution			0 - 4500W 1W ± (5% Reading +3W) 0.000 - 1.000 0.001 ± (8% Reading +2 Digit) 0.00 - 10.00mA 0.01mA				
Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range			0 - 4500W 1W ± (5% Reading +3W) 0.000 - 1.000 0.001 ± (8% Reading +2 Digit) 0.00 - 10.00mA				
1 1	Accuracy Testing time Rise Time/ I Waiting time function Accuracy Resolution Accuracy Testing time Rise Time/ I Waiting time function Test Range Resolution Accuracy Range Resolution Accuracy n Range and Accuracy 0.0001A - 0 0 - 1000Ω 1001 - 1000Ω nance test Range Resolution	Accuracy Test Range Accuracy Test Range Accuracy Testing time Rise Time/ Fall time Waiting time function Test Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy 1.00 - 3.00A 3.01 - 10.00 10.01 - 30.00 30.01 - 40.0	Accuracy Test Range Accuracy Test Range Accuracy Testing time Rise Time/ Fall time Waiting time function 1 Test Range Resolution Accuracy Range Resolution Accuracy To sting time Time time time Waiting time Rise Time fall time Waiting time Roution 1 Test Range Resolution Accuracy Range Resolution Accuracy To sting time To time time To time time To time time To time time Range Resolution Accuracy Range Resolution Accuracy To time time time To time time time time To time time time time time To time time time time time time time time	Coutput DC:0.05 - 5.0kV Resolution 2V Accuracy ± (1% Reading +5V) Test Range 0.1MΩ - 50.0GΩ Accuracy ± (3% Reading +1M) V≥500V 1MΩ - 1GΩ ± (5% Reading +0.2G) 10GΩ - 50GΩ ± (10% Reading +0.5G) V<500V	Accuracy DC:0.05 - 5.0kV Resolution	Coutput DC:0.05 - 5.0kV Resolution 2V Accuracy ± (1% Reading +5V) Test Range ± (10MΩ - 50.0GΩ Accuracy ± (10MΩ - 50.0GΩ ½ (2500V) 10GΩ - 50GΩ ½ (10% Reading +0.2G) ½ (2500V) 10MΩ - 1GΩ ½ (5% Reading +0.5G) ½ (2500V) 10MΩ - 1GΩ ½ (5% Reading +0.0G) ½ (2500V) 10M - 1GΩ ½ (5% Reading +100V/N*10M) Testing time 0.1 - 999s, 0 means off ½ (30 - 40.00A) ½ (26% set value +2 Digit) ¾ (26% set value +2 Digit) ¾ (26% set value +2 Digit) ¾ (26% set value +3 Digit)	

IV. TH9130 Series Multifunction Safety Compliance Analyzer

Leakage Curren	t Test							
- 127.5	Range			0 - 277Vac,16Aac Max				
Input Voltage	Accuracy			± (1.5% Reading +2 Digit) (30 - 27				
Leakage	Test Range			0.0µA - 10.00mA				
Current	Test Freque			DC, 15Hz - 1MHz				
	AC+DC	,		0.5 - 999s, 0 means continuous testir	na			
Test Time	AC/DC			0.1 - 999s, 0 means continuous testir	-			
	7.0720			AC+DC	0.5 - 999s			
Waiting Time				AC/DC	1.8 - 999s Auto Range 1.3 - 999s Fixed Range			
	A:			UL544NP、UL484、IEC60598、UL13 UL867、UL697	63、UL923、UL471、			
	B:			UL544P				
Body	C:			UL2601 - 1、IEC60601 - 1、EN60601	- 1			
Impedance	D:			UL1563				
Network (MD)	E:			IEC60990Fig4U2、IEC60950 - 1、IEC UL484、IEC60065、IEC61010	60335 - 1、IEC60598 - 1、			
	F:			IEC60990Fig5U3、IEC60598 - 1				
	G:			Frequency Detection 1kΩ				
MDA-G Devices	Resistance	Precision		±1%				
precision		ce Precision		±5%				
MD Voltage Prot				30V Peak Value or 30Vdc				
30V Peak Value				G-L, PH-L, PH-PL				
	MD main re	sistance		Range				
	0.5kΩ / 1kΩ			0.0µA - 10.00mA				
	0.011227 1112		0.5: 1	<1000μA	0.1µA			
		Auto Range	2 & Fixed	1000μΑ - 8400μΑ	1μΑ			
	Resolution	Range 3 (1k8		>8400μΑ	0.01mA			
	resolution	F: 1	0 (0 51 145) 0	<8400μΑ	1μΑ			
		Fixed range 3 (0.5kMD) & Fixed range 4 - 6		>8400µA	0.01mA			
			T	'				
		Range	ge Test Mode AC+DC	Prequency DC	Accuracy			
Leakage					± (2%Reading+3 Digit)			
Current Range				15Hz <f<100khz< td=""><td>± (2%Reading+3 Digit)</td><td></td></f<100khz<>	± (2%Reading+3 Digit)			
eEfective Value		_		100kHz≤f≤1MHz	± (5%Reading) >10.0µA			
RMS		Range	1 5		15Hz <f≤30hz< td=""><td>± (3%Reading+5 Digit)</td><td></td></f≤30hz<>	± (3%Reading+5 Digit)		
			AC only	30Hz <f<100khz< td=""><td>± (2%Reading+3 Digit)</td><td></td></f<100khz<>	± (2%Reading+3 Digit)			
	Range Accuracy	0	,			100kHz≤f≤1MHz	± (5%Reading) >10.0µA	
	Accuracy		DC only	DC	± (2%Reading+3 Digit) >10.0μA			
			AC+DC	DC				
				15Hz <f<100khz< td=""><td></td><td></td></f<100khz<>				
		Range 6	AC only	15Hz <f≤30hz< td=""><td>± (5%Reading) >10.0μA</td><td></td></f≤30hz<>	± (5%Reading) >10.0μA			
				30Hz <f<100khz< td=""><td></td><td></td></f<100khz<>				
			DC only	DC				
	MD main re	sistance		Range				
	0.5kΩ / 1kΩ	2 / 1.5k Ω		0.0µA - 10.00mA				
		Auto Range	e & Fixed	<1000µA	0.1μΑ			
		Range 1 - 2	2 & Fixed	1000μΑ - 8400μΑ	1μΑ			
	Resolution	Range 3 (1	k&1.5kMD)	>8400µA	0.01mA			
Leakage			e 3 (0.5kMD) &	<8400μA	1μΑ			
Current Range Peak Value		Fixed range	e 4 - 6	>8400µA	0.01mA			
PEAK Value PEAK		Range	Test Mode	Frequency	Accuracy			
			40,00	DC	± (2%Reading+2μA)			
	_	Range1-5	AC+DC	15Hz≤f≤1MHz	± (10%Reading+2μA)			
	Range		AC only	15Hz <f<1mhz< td=""><td>± (10%Reading+2µA)</td><td></td></f<1mhz<>	± (10%Reading+2µA)			
	Accuracy			DC	± (2%Reading+3 Digit)			
		Range6	AC+DC	15Hz <f<100khz< td=""><td>± (10%Reading+2 Digit)</td><td></td></f<100khz<>	± (10%Reading+2 Digit)			
		900	AC only	15Hz <f<100khz< td=""><td>± (10%Reading+2 Digit)</td><td></td></f<100khz<>	± (10%Reading+2 Digit)			
			AC only	10HZ <t<1uukhz< td=""><td>± (10%Reading+2 Digit)</td><td></td></t<1uukhz<>	± (10%Reading+2 Digit)			

IV. TH9130 Series Multifunction Safety Compliance Analyzer

	MD main resistance			Range			
				0.0mV - 15.00V			
			O Fixed	<1000mV 0.1mV			
		Auto Range Range 1 - 2		1000mV - 8400mV	1mV		
	Resolution	Range 3 (1		>8400mV	0.01V		
	Resolution						
		Fixed range Fixed range	3 (0.5kMD) &	<8400mV	1mV		
		ū	I	>8400mV	0.01V		
		Range	Test Mode	Frequency	Accuracy		
Leakage				DC	± (2%Reading+3Digit)		
Voltage Range			AC+DC	15Hz <f<100khz< td=""><td>± (2%Reading+3Digit)</td><td></td></f<100khz<>	± (2%Reading+3Digit)		
Effective Value RMS			100kHz≤f≤1MHz	± (5%Reading) >10.0mV			
	Range1-5		15Hz <f≤30hz< td=""><td>± (3%Reading+5Digit)</td><td></td></f≤30hz<>	± (3%Reading+5Digit)			
		range 1-0	AC only	30Hz <f<100khz< td=""><td>± (2%Reading+3Digit)</td><td></td></f<100khz<>	± (2%Reading+3Digit)		
	Range			100kHz≤f≤1MHz	± (5%Reading) >10.0mV		
	Accuracy		50 1	50	± (2%Reading+3Digit)		
			DC only	DC	>10.0mV		
				DC			
			AC+DC	15Hz <f<100khz< td=""><td></td><td></td></f<100khz<>			
		Range6		15Hz <f≤30hz< td=""><td>± (5%Reading) >10.0mV</td><td></td></f≤30hz<>	± (5%Reading) >10.0mV		
			AC only	30Hz <f<100khz< td=""><td></td><td></td></f<100khz<>			
			DC only	DC	-		
	MD main re	eietanco	DC Offig				
				Range			
	0.5kΩ / 1kΩ			0.0mV - 15.00V	0.4m)/		
		Auto Range		<1000mV	0.1mV		
	D!-#:	Range 1 - 2 Range 3 (1) Fixed range Fixed range		1000mV - 8400mV	1mV		
Leakage	Resolution		•	>8400mV	0.01V		
Voltage Range				<8400mV	1mV		
Peak Value			r	>8400mV	0.01V		
PEAK		Range	Test Mode	Frequency	Accuracy		
		Range1-5		DC	± (2% Reading+2mV)		
	Range			15Hz≤f≤1MHz 15Hz <f<1mhz< td=""><td>± (10% Reading+2mV) ± (10% Reading+2mV)</td><td></td></f<1mhz<>	± (10% Reading+2mV) ± (10% Reading+2mV)		
	Accuracy		AC only	DC	± (2% Reading+3 Digit)		
			AC+DC	15Hz <f<100khz< td=""><td>± (10% Reading+2 Digit)</td><td></td></f<100khz<>	± (10% Reading+2 Digit)		
		rtarigeo	AC only	15Hz <f<100khz< td=""><td>± (10% Reading+2 Digit)</td><td></td></f<100khz<>	± (10% Reading+2 Digit)		
OSC Open and	Short Circuit	Detection	AC OIIIy	10112 VI VIOUNIE	± (10%) (Teading 12 Digit)		
Sampling Standa				0.001 - 40nF			
Open circuit judg		ioo rango		10% - 100%			
Short circuit judg				100% - 500%			
Safety Protection							
Electric Shock P				0.5mA±0.25mA Option: on or off			
Start Protection I				The pin is grounded to allow high volta	age output.		
Panel operation				key lock			
Alarm indication				Pass: short tone, green light; Fail: long tone, red light			
Electrical and lea	akage power	short circuit	protection	23A _{RMS} or Electric shock 68A _{PEAK}			
Hipot and ground				5kVac/30mAac and 30Aac/150mΩ(TH	I9131/TH9131A)		
Storage and Inte				,	,		
Internal memory				Can save 100 files, 50 steps per file.			
Standard interface				RS232, USB DEVICE, USB HOST,	LAN, HANDLER		
Optional interfac				GPIB			
Ambient tempera		midity					
Parameter Comp				18°C - 28°C, humidity:30% - 70%RH			
Normal Working				0°C - 45°C, humidity:20% - 90%RH			
	Storage Ambient Temperature			-10°C - 55°C, humidity:<80%RH			
General Informati							
Power Supply				100V - 240VAC, 47Hz - 63Hz			
Power				No load: <100W, Rated power:1200W			
Size (W) × (H) × (D)			430mm×132mm×550mm			
Weight				40kg	38kg	34kg 32kg	
					·	· · · · · · · · · · · · · · · · · · ·	

IV. TH9200 Series Hipot Tester

Features

- TH9201S:8-channel scanning AC/DC withstanding voltage & insulation tester TH9201/TH9201B: AC/DC withstanding voltage & insulation tester TH9201C: AC withstanding voltage tester
- 240×64 Dot-matrix graphic LCD display
- Fast discharge and arc detection function
- Body protection function
- Built-in 8-channel matrix scanner for convenient use
- Set voltage rising time, test time, and voltage dropping time randomly for different load, DC withstanding voltage current judging & waiting time
- 100 test steps being stored per group, totally 50 groups, and the total testing steps are limited at 500
- Current base number correction function
- Brand new operation interface and humanized panel design
- Abundant interfaces Handler, RS-232C, SCAN, GPIB(optional)

TH9201

Brief Introduction

■ TH9201 series AC/DC withstanding voltage & insulation tester is a kind of Hipot Tester. Due to simple and compact structure, mature technique, brand new structure and operating interface, the operation becomes more convenient, and more practical functions are included as well. TH9201 series can be widely applied in transformer, device, component especially for winding safety inspection.

Mc	odel	TH9201	TH9201S			
Withstanding vol		1113201	11102010			
	AC	0.05kV—5kV ±(1.0% of reading+5 digit) (50 \ 6	60Hz optional)			
Output voltage	DC	0.05kV—6kV ±(1.0% of reading+5 digit)	· ,			
	Voltage adjustment rate	≤(1.0% +10V) (rated power)				
	AC	0.01mA - 30mA				
Current test	DC	0.1μA - 10mA				
range	Test accuracy	±(1.0% of reading+5 digit)				
	Discharge function	Discharge after test ends (DCW)				
Insulation resista	ance test					
Output voltage		0.05kV - 1kV ±(1.5% of reading+5V)				
Resistance test r	range	0.1MΩ $^-$ 10GΩ $^-$ (Current range within 10nA-10mA	.)			
Resistance test	500V-1000V	$1M\Omega - 1G\Omega \pm (5\% \text{ of reading +5 digit})$ $1G\Omega - 100$	GΩ ±(10% of reading +5 digit)			
accuracy	50V-500V	$0.1M\Omega$ – $1G\Omega$ ±(10% of reading +5 digit)				
Discharge function	on	Discharge after test ends				
Arc detection						
Measurement	AC	1mA - 15mA				
range	DC	1mA - 10mA				
General specification	ation					
8-channel matrix	scanner		available			
Memory		50groups, 100 steps per group, totally 500 steps				
Voltage rise-time)	0.1s - 999s				
Voltage fall-time		0.1s - 999s				
Voltage wait-time	Э	0.1s - 99.9s (only for DC)				
Test time setting		0.3s - 999s				
Interface						
Standard		RS232, USB,HANDLER, REMOTE I/O, SCAN				
Options		GPIB				

IV. TH9320-S4/TH9320-S8 Hipot Tester

Features

- Output voltage: AC:5kV/20mA; DC:6kV/10mA
- Test voltage of insulation resistance: 0.10 kV-1.00 kVTest range of insulation resistance: $1 \text{M}\Omega$ - $1000 \text{M}\Omega$
- 480×272 dot-matrix, TFT-LCD display
- Provide 4 channels (-S4), 8 channels (-S8) scan interface
- Rapidly discharging and arc detection
- Randomly set voltage rising time and testing time in 999.9 seconds; Freely set waiting time for insulation resistance
- Hold 20 testing steps; 4 testing modes selectable
- Brand new operation interface and concise interface operation design
- Lock keyboard

Brief Introduction

■ TH9320-S series AC/DC withstanding voltage/insulation resistance tester is an economical and intelligent safety tester with the characteristics of small size, light weight, pleasing appearance and easy operation. TH9320-S series can be widely used in the safety tests of household appliances, transformer, electrical equipments and components.

((

 ϵ

TH9320-S8

TH9320-S4

RS232	USB HOST	USB DEVICE	HANDLER	PLC
standard	standard	standard	standard	standard

Dimension(mm):280mm(W)x138mm(H)x428mm(D) Weight: 18kg

Specifications

N	Model	TH9320-S4	TH9320-S8		
Withstanding vo	Itage test				
	AC	0.05 —5.00kV \pm (2% reading+5digits) , (50Hz,	60Hz optional)		
Output voltage	DC	0.05 —6.00kV ± (2% reading+5digits)			
Output voltage	Voltage adjustment rate	≤ (1% - 5V)(rated power)			
	AC	0.000mA – 20.00mA ±(2% reading+2digits)			
Current test range	DC	$0uA-10.00mA \pm (2\% reading+2 digits)$			
range	Discharge function	Discharge after test ends (DCW)			
Insulation resista	ance test				
Output voltage		0.10kV – 1.00kV ±(2%reading+2V)			
Resistance test	range	1ΜΩ– 9999ΜΩ			
Resistance	500V-1000V	1M Ω – 1000M Ω ±(5%reading+2digits) ;1000M Ω –9999M Ω ±(10%reading+2digits)			
test accuracy	100V-500V	1MΩ– 1000MΩ \pm (10%reading+2digits)			
Discharge functi	on	Discharge after test ends			
Arc detection					
Measurement	AC	1 – 9 levels (factory default 5) (20mA, 18mA, 16mA, 14mA, 12mA, 10mA, 7.7mA, 5.5mA, 2.8mA respectively)			
range	DC	1 – 9 levels			
General specific	ation				
Memory		5 groups			
Voltage rising tir	ne	0.1s - 999.9s			
Test time setting	(AC/DC)	0.2s - 999.9s			
Waiting time (IF	R)	0.2s - 999.9s			
Time Accuracy		±(1%+0.1s)			
Scan interface		4 channels	8 channels		

Standard Accessories

TH90003R Withstand Voltage Test Cable X 9 (only TH9320-S8) TH90003R Withstand Voltage Test Cable X 5 (only TH9320-S4)

TH90003C Withstand Voltage Test Cable

IV. TH9310/TH9320 Series Hipot Tester

Features

- TH9310 series: AC:5kV/10mA; DC:6kV/5mA AC/ DC withstanding voltage/insulation resistance tester
 TH9320 series: AC:5kV/20mA; DC6kV/10mA AC/ DC withstanding voltage/insulation resistance tester
- TH9310/20: AC/ DC withstanding voltage/insulation resistance tester TH9310B: AC withstanding voltage tester
- 480×272 dot-matrix, TFT-LCD display
- Rapidly discharging and arc detection
- Randomly set voltage rising time and testing time in 999.9 seconds;Freely set waiting time for insulation resistance
- Hold 5 testing steps; 4 testing modes selectable
- Brand new operation interface and concise interface operation design
- Lock keyboard
- PLC interface

TH9310/TH9320 Series

Dimension(mm):280mm(W)x88mm(H)x428mm(D)
Weight: 11kg (only TH9310 series), 12.311kg (only TH9320 series)

Brief Introduction

■ TH9310/20 series withstanding voltage/insulation resistance tester is an economical and intelligent safety tester with the characteristics of small size, light weight, pleasing appearance and easy operation. TH9310/20 series can be widely used in the safety tests of household appliances, transformer, electrical equipments and components.

Specifications

-	Model	TH9310/20	TH9310B
Withstandin	g voltage test	1110010120	11100102
	AC	0.05 —5.00kV ± (2% reading+5digits) , (50Hz, 60Hz optional)	
Output	DC	0.05 —6.00kV ± (2% reading+5digits)	
voltage	Voltage adjustment rate	≤ (1% - 5V) (rated power)	
	AC	TH9310: 0.000mA – 10.00mA ±(2% reading+2digits)	
Current		TH9320: 0.000mA – 20.00mA ± (2% reading+2digits)	1
test	DC	TH9310: $0uA - 5.00mA \pm (2\% \text{ reading+2digits})$	
range		TH9320: 0uA –10.00mA ±(2% reading+2digits)	
	Discharge function	Discharge after test ends (DCW)	
Insulation re	esistance test		
Output volta	ige	0.10kV - 1.00kV ±(2%reading+2V)	
Resistance	test range	1ΜΩ– 9999ΜΩ	
Resistance 500V-1000V		1MΩ $-$ 1000MΩ ±(5%reading+2digits) 1000MΩ $-$ 9999MΩ ±(10%reading+2digits)	
test accurac	100V-500V	1MΩ– 1000MΩ \pm (10%reading+2digits)	
Discharge fu	unction	Discharge after test ends	
Arc detectio	n		
Measureme	nt range	Corresponding current 1mA-20mA	
General spe	ecification		
Memory		5 groups	
Voltage risir	ng time	0.1s - 999.9s	
Test time se	etting (AC/DC)	0.2s - 999.9s	
Waiting time	e (IR)	0.2s - 999.9s	
Time Accura	асу	±(1%+0.1s)	
Dimension	(W×H×D)	280mm×89mm×428mm/10kg	
Interface			
Standard		HANDLER, RS232, USBDRV(PC interface), USBHOST(USB port)	

Standard Accessories

IV. TH9010/A Parallel 8-channel/4-channel Hipot Tester

Features

- 7-inch 800×480 dot-matrix, TFT-LCD display
- Chinese and English operation interface and concise interfacet operation design
- 8-channel withstand voltage parallel output and test efficiency increased eight times
- Parallel 8-channels and each channel is non-interfering
- Each channel can be extended by a four-channel scanner
- Support 4 four-channel scanner at most and one instrument can be extended to 128 channels
- Four-channel scanner supports contact check function
- Single output power: AC:5kV/10mA; DC:6kV/5mA
- Insulation resistance test voltage: 0.10kV -1.00kV
- Enhanced security: electric shock protection
- Rapid discharge and arc detection function
- Arbitrarily set voltage rising time and test time in 999.9 seconds; freely set waiting time for insulation resistance
- Key-Lock Function
- Display the PASS/FAIL result of each channel independently and the total result simultaneously
- Store 100 test files and each file can hold at most 20 testing steps

Application

- Automated test system
- Household appliances
- Transformers, motors
- Electrical equipment
- Lighting industry
- New energy vehicles
- Electronic components
- Medical equipment

TH9010

Dimension(mm): 430(W)×177(H)×630(D) Weight: 40kg

TH90101 8-unit four-channel scan expander TH90101A 4-unit four-channel scan expander

3pecificati	UIIS					
Model		TH9010		TH9010A		
Number of units		8 separate channel		4 separate channel		
Withstanding vol	tage test					
Output voltage	AC	0.10kV — 5.00kV	±2%			
Output voitage	DC	0.10kV — 6.00kV	±2%			
	AC	0mA — 10.00mA	±(2% readings + 5 digits)			
Current test	DC	0uA — 5.00mA	±(2% readings + 5 digits)			
Range	Rapid discharge function	Discharge after test	ends (DCW)			
Insulation resista	nce test					
Output voltage		0.10kV — 1.00kV	±2%			
Resistance test r	ange	$0.1 \text{M}\Omega - 10.0 \text{G}\Omega$				
5		0.10MΩ — 999MΩ ±10%				
Resistance test a	accuracy	1.00GΩ — 10.0GΩ ±20%				
Discharge function	on	Discharge after test ends				
Arc detection						
Test range	Corresponding current	1mA — 20mA				
General specifica	ation					
Voltage rising tim	ne	0.1s — 999.9s				
Test time setting	(AC/DC)	0.2s — 999.9s				
Voltage fall time		0.1s — 999.9s				
Waiting time (IR)		0.2s — 999.9s				
Time accuracy		±(1%+0.1s)				
Memory	Memory		Store 100 test files and each file can hold at most 20 testing steps			
Interface						
Standard		HANDLER, RS232, USB DRV, USB HOST				

IV. TH2883S8-5/TH2883S4-5 Impulse Winding Tester

TH2883S8-5/TH2883S4-5

Dimension(mm):400mm(W)x132mm(H)x420mm(D) Weight: 15kg

Features

- Impulse voltage of 100V~5000V
- Two models of 4-channel and 8-channel4 for selection
- Each channel can be programmed and controlled as highterminal, low-terminal and OFF
- 20 test procedures can be added at most
- 65k color 7" TFT wide display screen
- Up to 200Msps waveform sampling rate
- Maximum measuring speed: 6meas/sec
- Storage depth of 6k Bytes
- High bandwidth analog acquisition circuit
- High-fidelity corona extraction algorithm (patent technology)
- Four waveform comparison methods
- Automatic storage of instrument parameters
- Measurements on voltage, time and frequency
- Amplification, stretch and movement of the waveform for accurate display
- Multi-sample average, average processing of 32 standard waveforms
- Destructive testing for your correct choose of voltage
- Use demagnetized impulse to ensure the conformity of tested waveforms
- Login of different user right for easy management
- 20 groups of instrument files can be stored and automatically loaded
- Screen information can be stored in USB disk (COPY key)
- System firmware can be automatically upgraded through USB-disk
- Selectable Chinese and English operation interfaces
- Four selectable display interface effects
- Foot control interface for easy measurements
- Handler interface to realize on-line operation
- RS232C, USB Device and LAN interface to realize remote control

Brief Introduction

■ TH2883 series products are newly developed impulse winding testers by Tonghui. This product line makes Tonghui as the first provider of impulse winding tester from low voltage of 30V to high voltage of 10kV, single channel to multichannel (Max.:8 channels) in this industry. The instrument adopts popular 32 bit CPU and high density SMD technology, 65k color 7-inch TFT wide display screen, bringing ease for your eyes and convenience to your operation. The impulse voltage of100V~5000V, maximum 8 channel sweep test, maximum 20 test procedures, sampling rate of 200Msps, memory depth of 6k bytes makes your test accurately. The usage of standard sample average, application of demagnetized impulse, high bandwidth analog acquisition circuit, technology of high-fidelity corona extraction as well as the opening of non-destructive test reflect the design philosophy "customer-oriented, share the future technology with you" of Tonghui.

According to the output number of channels, TH2883 series is consist of 2 models:TH2883S8-5 and TH2883S4-5. TH2883S8-5 is the ideal product for measurements of multiphase coils. The 8 channel of TH2883S8-5 can be programmed and configured as voltage high-terminal, voltage low-terminal and OFF. Any combination of the configuration condition of the 8 channels and maximum 20 test procedures can be achieved. Also, it can test the coils successively in 8 channels. TH2883S4-5 is provided with 4 channels. It is especially developed on the basis of the 8 channels of TH2883S8-5 for customers who need less sweep channels. USB Host, RS232C, USB Device and LAN interface are provided in TH2883 series products for your quick save of the waveforms and remote control of the instrument.

Corona extraction function

With high-fidelity corona extraction algorithm (patent technology)

and high bandwidth analog acquisition circuit, TH2883 series products can fully recover the corona waveform of high-frequency and makes you know more about the insulating property of products.

TH2883S8-5 is provided with 8 channels from CH1-CH8,TH2883S4-5 is provided with 4 channels from CH1-CH4. These channels are installed on the rear panel for convenient use, as shown in the figure:

IV. TH2883S8-5/TH2883S4-5 Impulse Winding Tester

Specifications

Model		TH2883S8-5	TH2883S4-5			
Impulse voltage		100V-5000V 10V steps				
Voltage accurac	У	±(5% set value +15V)				
Readback accur	racy	±(5% actual value +15V)				
Channels		8	4			
Inductance test	range	≥10uH				
Impulse energy		Max.: 0.25 Joule				
Test speed		6 times/second (single channel, single step)				
Pulses applied		Max.: 32				
Input Impedance	e	5 ΜΩ				
Display		800x480 dots, 65k color TFT; Waveform Display I	Range: 600x256			
Waveform Acqu	isition	Sampling rate: Max. 200Msps, 8 levels adjustable Resolution: 8 Bits Memory Depth: 6k Bytes Average: 1 to 32				
Comparison Me	thods	Comparison with Standard Waveform: Area Size Comparison Differential Area Comparison Corona Discharge Comparison Differential Phase Comparison				
Waveform Meas	surement	Voltage/Frequency/Time				
Trigger Mode		Manual/External/Bus/Internal				
Detection Output	ıt	Pass/Fail display/LED/ Alarm				
Measurement S	tatistics	Statistics for measurement results				
Memory		20 groups of standard waveform data and instrument setup can be stored in internal non-volatile memory. USB flash memory can be used as external memory.				
Interface		Handler, RS232C, USB Device, USB Host, LAN				
Power supply						
Power supply		110V/220V ±10% 50Hz/60Hz ±5%				
Power consumption		<200VA				
General conditions						
Working	Temperature	0°C - 40°C				
environment	Humidity	≤75% R.H.				
Safety and electromagnetic compatibility		IEC61010-1:2001,IEC61326-2-1:2005				

Standard Accessories

Three core power cord

TH2881-001 Foot Switch

TH2883-01 High voltage test cable

TH90003R High voltage test cable x 8 (only for TH2883S8-5) High voltage test cable x 4 (only for TH2883S4-5)

 ϵ

IV. TH2883 Series Impulse Winding Tester

TH2883 Series

Dimension(mm):400mm(W)x132mm(H)x420mm(D) Weight: 15kg

Features

- Impulse voltage of 30V~10kV
- Minimum inductance value of winding that can be tested: 1uH
- 65k color 7" TFT wide display screen
- Up to 200Msps waveform sampling rate
- Maximum measuring speed: 6meas/sec
- Storage depth of 6k Bytes
- High bandwidth analog acquisition circuit
- High-fidelity corona extraction algorithm (patent technology)
- Four waveform comparison methods
- Automatic storage of instrument parameters
- Measurements on voltage, time and frequency
- Amplification, stretch and movement of the waveform for accurate display
- Multi-sample average, average processing of 32 standard waveforms
- Destructive testing for your correct choose of voltage
- Use demagnetized impulse to ensure the conformity of tested waveforms
- Login of different user right for easy management
- 20 groups of instrument files can be stored and automatically loaded
- Screen information can be stored in USB disk (COPY key)
- System firmware can be automatically upgraded through USB-disk
- Selectable Chinese and English operation interfaces
- Four selectable display interface effects
- Foot control interface for easy measurements
- Handler interface to realize on-line operation
- RS232C, USB Device and LAN interface to realize remote control

Brief Introduction

■ TH2883 series products are newly developed impulse winding testers by Tonghui. This product line makes Tonghui as the first provider of impulse winding tester from low voltage of 30V to high voltage of 10kV, single channel to multichannel (Max.:8 channels) in this industry. The instrument adopts popular 32 bit CPU and high density SMD technology, 65k color 7-inch TFT wide display screen, bringing ease for your eyes and convenience to your operation. The minimum impulse voltage of 30V, maximum impulse voltage output of 10kV, winding test of 1uH inductance value, sampling rate of 200Msps, memory depth of 6k bytes makes your test accurately. The usage of standard sample average, application of demagnetized impulse, high bandwidth analog acquisition circuit, technology of high-fidelity corona extraction as well as the opening of non-destructive test reflect the design philosophy "customer-oriented, share the future technology with you" of Tonghui.

According to the output voltage, TH2883 series is consist of 3 models:TH2883-1, TH2883-5 and TH2883-10. With minimum impulse voltage of 30V and maximum impulse voltage of 1200V, TH2883-1 low inductance impulse winding tester can test windings of 1uH low inductance value. The instrument is the ideal test product for inductance coils used by switching power supply. With impulse voltage of 100V~5000V, TH2883-5 is a standard product for testing all kinds of coils. With maximum impulse output voltage of 10kV, TH2883-10 is appropriate for interturn test of higher insulation and voltage resistance.

Standard-equipped USB Host, RS232C, USB Device and LAN interface of TH2883 series product are convenient for your fast storage of graphs and remote control.

Corona extraction function

With high-fidelity corona extraction algorithm (patent technology)

and high bandwidth analog acquisition circuit, TH2883 series products can fully recover the corona waveform of high-frequency and makes you know more about the insulating property of products.

The maximum output test voltage of TH2883-1 is related to the load inductance value, as shown in the follow:

IV. TH2883 Series Impulse Winding Tester

Specifications

Model		TH2883-1	TH2883-5	TH2883-10				
Impulse voltag	ge	30V-1200V 5V steps	100V-5000V 10V steps	500V-10kV 20V steps				
Voltage accuracy		±(5% set value +5V)	±(5% set value +15V)	±(5% set value +25V)				
Readback acc	curacy	±(5% actual value +5V)	±(5% actual value +15V)	±(5% actual value +25V)				
Channels		1						
Inductance tes	st range	≥1uH	≥10uH	≥20uH				
Impulse energ	Jy	Max.: 0.02 Joule	Max.: 0.25 Joule	Max.: 0.5 Joule				
Test speed		6 times/second	6 times/second	3 times/second (when 10kV impulse voltage is output)				
Pulses applied	d	Max.: 32						
Input Impeda	nce	5 ΜΩ						
Display		800x480 dots, 65k color TFT; Wav	veform Display Range: 600x256					
Waveform Acc	quisition	Sampling rate: Max. 200Msps, 8 I Resolution: 8 Bits Memory Depth: 6k Bytes Average: 1 to 32	Memory Depth: 6k Bytes					
Comparison M	/lethods	Comparison with Standard Waveform: Area Size Comparison Differential Area Comparison Corona Discharge Comparison Differential Phase Comparison						
Waveform Me	asurement	Voltage/Frequency/Time						
Trigger Mode		Manual/External/Bus/Internal						
Detection Out	put	OK/NG display/LED/ Alarm						
Measurement	Statistics	Statistics for measurement results						
Memory		20 groups of standard waveform data and instrument setup can be stored in internal non-volatile memory. USB flash memory can be used as external memory.						
Interface		Handler, RS232C, USB Device, USB Host, LAN						
Power supply								
Power supply		110V/220V ±10% 50Hz/60Hz ±5%	/ ₀					
Power consun	nption	≤200VA						
General condi	tions							
Working	Temperature	0°C - 40°C						
environment	Humidity	≤75% R.H.						
Safety and electory	ectromagnetic	IEC61010-1:2001,IEC61326-2-1:2005						

Standard Accessories

Three core power cord

TH2881-001 Foot Switch

TH2883-01 High Voltage Test Cable

IV. TH9410A/TH9411A Ground Bond Tester

Features

- Test current: 1.00-45.00A
- Grounding resistance range: 0-600mΩ
- Four-terminal test mode to ensure test accuracy
- The internal power amplifier circuit drives the current output, which is not affected by the power supply and load
- The output holes on the front and rear panels are designed to facilitate the integration of standard chassis
- 480×272 dots, TFT-LCD display
- 999.9 seconds test time, which is greater than common 60S test requirements
- Keyboard lock function to prevent misoperation
- Safety lock function to prevent the instrument from accidentally opening the test state
- Store 20 test files, each with 20 test steps

RS232	USB HOST	USB DEVICE	HANDLER
standard	standard	standard	standard

Dimension (mm): 280(W) x 88(H) x 428(D)

Net weight: 14 kg

Application

- Automated test system
- Household appliances
- Transformer, motor
- Electrical equipment
- Electric heating appliances
- Lighting industry
- New energy vehicles
- Electronic components
- Medical equipment

Model			TH9410A			TH9411A		
		Scop	1A-45A		1A-32A			
		Range	1.00A-5.00A	5.01A-30A	30.01A- 45A	1.00A-5.00A	5.01A-32A	
	Current	Accuracy	±(2% Reading + 3 Digit)					
Output		Setting Resolution	0.01A					
		Readback Resolution	0.01A					
	Output V	'oltage	8Vmax		6Vmax	8Vmax		
	Frequency		50 / 60Hz: ± 0.1%SET					
	Test Range		0-600m Ω (Rmax <=6 / Iset (Iset: Setting Current)), The max Resistance could be 600m Ω when the current is less than 10A.					
	Accuracy		± (2% Reading + 2 Digit)					
	Resolution	on	1 mΩ	0.1 m Ω	0.1 m Ω	1 mΩ	0.1 m Ω	
Davistana		Upper Limit	0-600m Ω					
Resistance	Setting	Lower Limit	0-600mΩ (Less than Upper Limit)					
		Resolution	$1m\Omega$					
		Range	0 - 100 mΩ					
	Bias	Resolution	0.1m Ω					
		Accuracy	± (2% Setting + 2 Digit)					
		Range	0, 0.5 - 999.9s (0 = Continuous)					
Test Time		Resolution	0.1s					
		Accuracy	± (0.1% + 0.05s)					
		Voltage	110V, 220V					
Input Power		Frequency	47.5-63Hz					
		Power Consumption	<=900VA			<= 800VA		

Cable/Harness Tester

IV. TH8601/A Cable/Harness Tester

Features

- 7" TFT LCD truecolor display screen, 16-bit, 800X480 resolution
- Cotex_M3 processor core
- Selectable Chinese and English operation interface
- AC: test frequency of 50Hz-300kHz, accuracy of 0.02%
- DC: test range of 0V-5V and accuracy of 10%
- Maximum 128 pin for sweeping and testing
- Insulation resistance of more than 10G
- Selectable RS232, RS485, GPIB, USB,

LAN and Handler interfaces

 USB interface can be used for storage of setup files and test data as well as upgrade of the program

Application

Communication and IT

telephone lines, network cables, multi-strand cables, mobile phone screen cables, TYPE-C data cables, USB data cables, laptop screen cables, HDMI cables, VGA cables, IDE hard disk cables, SATA hard disks Connection line etc.

Automotive Electronics

ECU cable, automotive wiring harness, navigation cable, navigation screen cable, car electronic product cable, audio and video cable

	RS232	USB HOST	USB DEVICE	HANDLER	LAN	GPIB	RS485
ı	standard	standard	standard	standard	standard	option	option

TH8601/A

Dimension(mm): 425mm(W)x177mm(H)x355mm(D)

Weight: 7.5kg

■ Electronic Industry

Flat wire, flat wire, connector, power cord, multiplexer, RS232 connection line,GPIB cable, USB extension cable, multi-core socket

Components

Passive components: capacitors, inductors, resistors, diodes, capacitor polarity, voltage drop

Safety test

AC withstand voltage, DC withstand voltage, insulation insulation

Specifications

Parameters	Range	Specific Index	
Test Pin	TH8601	128 Pin	
iest Pin	TH8601A		64 Pin
	Sine signal source: 50Hz-300kHz, Programmable capacitan	ce component test 1Vrms	frequency: 0.02%, 1Vrms, Voltage 10%
	Programmable DC signal source:5Vdc N	ЛАX	10%
	Programmable DC current source:1-20n	nA	10%
Test signal source	Programmable DC high voltage	5V-100V	10%±1 digit
Source	source:1mA Max	100Vdc-1000Vdc	5%±1 digit
	Programmable	50V-100Vac	10%±1 digit
	AC high voltage source:10mA Max	100Vac-750Vac	5%±1 digit
	Channel plate on-off scanning signal so		
	Transient open and short circuit (128 po standard:10ms	indicates the time of sweeping 64 NET O/S at a time	
Test speed	Basic value of testspeed:100ms	Indicates the measurement time of single passive component or the total measurement time of one cable	
Capacitance	Range: 0.1pF-300pF (sample 10pFmin)		10%±3 digit
measurement	Range: 300pF-1000µF		5%±3 digit
Resistance measurement	10mohm-1Mohm		2%±1 digit
Cond. /Interval cond.	10mohm-50ohm		2%±1 digit
Open and short circuit	1kohm-50kohm	10%±1 digit	
Diode Testing	0-10V	10%±1 digit	
Insulation resistance	1Mohm-100Mohm	5%±5 digit	
modiation resistance	100Mohm-1000Mohm	10%±5 digit	
DC leakage current	1μΑ-1000μΑ		5%±2 digit
AC leakage current	0.01mA-5mA		10%±5 digit

Standard Accessories

TH26036-R Probe TH26060 Transfer Fixture TH8601-32 Test Cable

Cable/Harness Tester

IV. TH8602 Series Cable/Harness Tester

Features

- Test Pin: 64-256 pin, four-terminal test
- Conductance, Transient open and short circuit, Hipot, IR,
 Component test.
- (Patent) High and low voltage separation technology, insulation impedance > 100GΩ
- Built-in 10A independent DC current source for pressure dropping test
- 7" TFT LCD TrueColor display screen, 16-bit, 800X480 resolution
- Firmware update through U disk
- Selectable Chinese and English operation interface
- (Patent) 4 high-pressure test modes: a pair of other, dichotomy, automatic test, grounding test.
- Excellent and reliable ARC detection function
- Testing resistance, capacitance, diode and other components using four-terminal testing technology
- The module equipped with independent read-write chip detects whether the chip in the wire is working normally
- Support for connector testing
- Support multi-file testing, providing flexible solutions for complex wires
- Handler supports up to 40 outputs
- Communication command provides two instruction systems: SCPI
- Provide instrument self-inspection function, check instrument fault on line

RS232	USB HOST	USB DEVICE	HANDLER	LAN	GPIB	RS485
standard	standard	standard	standard	standard	option	option

 $Dimension(mm) \colon \ 425mm(W)x177mm(H)x355mm(D)$

Weight: 7.5kg

Application

Communication and IT

telephone lines, network cables, multi-strand cables, mobile phone screen cables, TYPE-C data cables, USB data cables, laptop screen cables, HDMI cables, VGA cables, IDE hard disk cables, SATA hard disks Connection line etc.

Automotive Electronics

ECU cable, automotive wiring harness, navigation cable, navigation screen cable, car electronic product cable, audio and video cable

Electronic Industry

Flat wire, flat wire, connector, power cord, multiplexer, RS232 connection line,GPIB cable, USB extension cable, multi-core socket

Components

Passive components: capacitors, inductors, resistors, diodes, capacitor polarity, voltage drop

Safety test

AC withstand voltage, DC withstand voltage, insulation insulation

Specifications

Specification			TH8602-1	TH8602B	TH8602C	TH8602-2	TH8602-3	TH8602-4	
Test Pin			64			128	192	256	
	AC	Frequency	50Hz-100kH	50Hz-100kHz, Accuracy 0.02%					
	AC	Range	0-1Vrms,Acc	uracy 10%					
Test Signal Source	DC	Voltage	0-5V, Accur	acy 10%±1 D	igit				
lest Signal Source	DC	Current	1-20mA, Ac	curacy 10%±	1 Digit				
	Channel board of scan signal soul		5Vdc						
Capacitance Measure	ement		1uF-1000 μ F ,	Accuracy:	10%±1 Digit				
DCR			10mΩ-1MΩ,	Accuracy: 2	2%±1 Digit				
Cond./Interval cond.			10m Ω -50 Ω						
Open and Short Circu	uit		1kΩ-50kΩ, Accuracy: 10%±1 Digit						
Diode Testing			0-10V, Accuracy: 10%±1 Digit						
DC withstand	Voltage		5V-1500V, Accuracy: 10%±1 Digit 5V-1000V, Accuracy: 10%±1Digit						
voltage	Current		1uA-5mA,Accuracy: 10%±5 Digit				1uA-5mA, Accuracy: 10%±5 Digit		
AC withstand	Voltage		50V-1000V, Accuracy: 10%±1 Digit 50V-750V, Accuracy: 10%±1				curacy: 10%±1 Digit		
voltage	Current		0.01mA-5mA, Accuracy: 10%±5 Digit				0.01mA-5mA, Accuracy: 10%±5 Digit		
Insulation	Voltage		5V-1500V, Accuracy: 10%±1 Digit 5V-1000V, Accuracy: 10%±1			curacy: 10%±1 Digit			
Resistance	Resistance		1MΩ-1GΩ, Accuracy: 10%±5 Digit			1MΩ-1GΩ, Accuracy: 10%±5 Digit			
	EMARK chip co and write check			√	√				
TYPE-C Cable Test	5A independent source	5A independent constant source			√				
	5A20V pressure	drop test			√				
Tost Spood			Instant breakpoint: 4ms						
Test Speed	lest Speed			Instantaneous circuit: 5µs-2ms					

Standard Accessories

TH26060D Probe TH26060B Transfer Fixture TH8601-32 Test Cable

Cable/Harness Tester

IV. TH8603-4 Cable/Harness Tester

Features

- 7-inch TFTLCD true color display, 800X480 resolution, 16-bit color.
- Internal storage space 3M
- Support U disk to store test files
- One-click screen capture function, pictures are automatically stored to U disk
- The program can be upgraded online via U disk
- Chinese and English optional operation interface
- Maximum provides 512 (two-wire)/256 (four-wire) channels, divided into 8 slots A, B, C, D, E, F, G, H
- (Patent) Provides 750VAC and 1000VDC high voltage test functions, adopts high and low voltage separation technology, makes its own insulation resistance up to 100G or more, and has a wider test range
- (Patent) Provide 4 kinds of high voltage test methods: one pair of other, dichotomy, automatic test, ground test 4 methods
- Provide excellent and reliable arc detection function
- Testing resistance, capacitance, diode and other components, using four-terminal test technology, higher test accuracy; using voltage and current separation parallel sampling technology, sampling data faster
- Support Typec related wire test, provide a complete test plan, and add the function of one-key setting of components.
- An independent DC constant current source is set inside, which can provide a maximum of 10A constant current source for measuring the voltage drop of the line
- An independent read-write chip module is built in to check whether the chip in the wire is normal
- Support connector test, provide multi-product test function, and signal output of each product.
- Support multi-file testing, providing more and more flexible testing solutions for complex wires.
- HANDLER interface, supports 16 outputs, all options are relay driven, and the user can freely define the signal and level of each channel
- Communication command provides SCPI command system
- Provide instrument self-check function and maintenance function, and can perform online troubleshooting of instrument foults.

Application

Communication and IT

telephone lines, network cables, multi-strand cables, mobile phone screen cables, TYPE-C data cables, USB data cables, laptop screen cables, HDMI cables, VGA cables, IDE hard disk cables, SATA hard disks Connection line etc.

Automotive Electronics

ECU cable, automotive wiring harness, navigation cable, navigation screen cable, car electronic product cable, audio and video cable

■ Electronic Industry

Flat wire, flat wire, connector, power cord, multiplexer, RS232 connection line,GPIB cable, USB extension cable, multi-core socket

Components

Passive components: capacitors, inductors, resistors, diodes, capacitor polarity, voltage drop

Safety test

AC withstand voltage, DC withstand voltage, insulation insulation

Standard Accessories

Three-core power cord TH26060D Probe TH26060B Transfer Fixture TH8601-32 Test Cable

RS232	USB HOST	USB DEVICE	HANDLER	LAN	GPIB	RS485
standard	standard	standard	standard	standard	option	option

Dimension(mm): 425mm(W)x177mm(H)x355mm(D) Weight: 7.5kg

Ongoification			TI 10000 4		
Specification		TH8603-4			
Test Pin		I	512		
	AC	Frequency	50Hz-100kHz, Accuracy 0.02%		
		Range	0-1Vrms, Accuracy 10%		
Test Signal	DC	Voltage	0-5V, Accuracy 10%± 1 Digit		
Source	БС	Current	1-15mA, Accuracy 10%±1 Digit		
	open-	nel board off scan source	5Vdc		
Capacitance M	easure	ment	1nF-1000µF, Accuracy: 10%±1 Digit		
DCR			10mΩ-1MΩ, Accuracy: 2%±1 Digit		
Cond./Interval	cond.		0.1Ω-950Ω		
Open and Shor	t Circui	t	1kΩ-50kΩ, Accuracy: 10%±1 Digit		
Diode Testing			0-10V, Accuracy: 10%±1 Digit		
DC withstand	Voltage		5V-1000V, Accuracy 5V-100V, 10%±1 Digit, 100V-1000V, 5%±1 Digit		
voltage	Current		1uA-1000uA, Accuracy: 10%±5 Digit		
AC withstand voltage	Voltag	je	50V-750V, Accuracy 50V-100V, 10%±1 Digit, 100V-750V, 5%±1 Digit		
voltage	Current		0.01mA-5mA, Accuracy: 10%±5 Digit		
Insulation	Voltag	je	5V-1000V, Accuracy: 10%±1 Digit		
Resistance	Resis	tance	1MΩ-1GΩ, Accuracy: 10%±5 Digit		
Test Speed Basic Test Spee	nd: 100	lme	Momentary Short Circuit: 20ms(512 Dots)		
Dasic lest spec	5u. 100	1110	Basic Test Speed: 100ms		

V. Instrument Accessories & Options

V. Instrument Accessories & Options

CHANGZHOU TONGHUI ELECTRONIC CO.,LTD.

Addr: No.1, Xinzhu Road, New District, ChangZhou, JiangSu, 213034 China. Tel: +86 519 85195566

Fax: +86 519 85109972 Email: lq@tonghui.com.cn dx.han@tonghui.com.cn

Website: en.tonghui.com.cn